

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

USABILITY ANALYSIS OF THE CHANNEL
APPLICATION PROGRAMMING INTERFACE

by

Christopher A. Brown

June 2003

 Thesis Advisor: Geoffrey Xie
 Second Reader: Rudolph P. Darken

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Usability Analysis of the Channel Application
Programming Interface

5. FUNDING NUMBERS

6. AUTHOR (S) Christopher Alan Brown
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the U.S. Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
Statement A

13. ABSTRACT (maximum 200 words)

The Channel Application Programming Interface (API) provides a tool for loosely coupling components in
Component Based Design (CBD) projects. In the thesis that proposed and developed the API, the author provided a
technical analysis of the API’s performance with respect to communication metrics. However, only the
author/designer has ever used the API; hence, no analysis was accomplished with respect to Usability attributes. The
project sponsor desires public release of the API. However, a usability analysis is first required to ensure wide
acceptance and use of the API.

In order to analyze the API, an analysis method and associated metrics are required. Little work has been
done in the field of Human Computer Interface (HCI) with respect to treating an API as an interface and
programmers as the end users. This thesis follows an IEEE published test protocol and well known HCI approaches
to test the API for general usability attributes as well as to investigate specific features of the API. Specifically, the
analysis will test the API’s ability to explain itself during first-time exposure in order to gain acceptance.

The results from testing the API are used to determine necessary enhancements to the API and its
documentation.

14. SUBJECT TERMS
Channel API; Application Programming Interface; Usability Analysis

15. NUMBER OF
PAGES

147
 16. PRICE CODE
17. SECURITY
CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for distribution; distribution unlimited

USABILITY ANALYSIS OF THE CHANNEL APPLICATION PROGRAMMING
INTERFACE

Ensign, United States Navy
B.S. Computer Science, San Diego State University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2003

Author: Christopher A. Brown

Approved by: Geoffrey Xie

Thesis Advisor

Rudolph P. Darken
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Channel Application Programming Interface (API) provides a tool for loosely

coupling components in Component Based Design (CBD) projects. In the thesis that

proposed and developed the API, the author provided a technical analysis of the API’s

performance with respect to communication metrics. However, only the author/designer

has ever used the API; hence, no analysis was accomplished with respect to usability

attributes. The project sponsor desires public release of the API, especially within the

Department of Defense (DoD). However, a usability analysis is first required to ensure

wide acceptance and use of the API.

In order to analyze the API, an analysis method and associated metrics are

required. Little work has been done in the field of Human Computer Interface (HCI)

with respect to treating an API as an interface and programmers as the end users. This

thesis follows an IEEE published case-study and well known HCI usability analysis

methods to test the API for general usability attributes as well as to investigate specific

features of the API. Specifically, the analysis will test the API’s ability to explain its

functionality during first time exposure. The API’s acceptance will depend on its success

or failure to convey its purpose quickly during this initial exposure.

The results from testing the API are used to determine required enhancements to

the API and its documentation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. CHANNEL API ANALYSIS PROBLEM ...1
B. MOTIVATION AND BENEFITS OF THESIS..3
C. ORGANIZATION OF THESIS ...3

II. BACKGROUND INFORMATION ...5
A. DESCRIPTION OF CHANNEL API ..5

1. Channel Model ...5
a. Component Assembly..6
b. Event-Driven Data Flow...7

2. Basic Objects ..8
a. Channel Class ...9
b. Channel Listener Interface...13
c. Talker Objects ...14
d. Encapsulation Classes ..14

3. Advanced Objects ..18
a. ChannelManager Class ..18
b. ChannelManagerAuthority Interface20
c. ChannelFilter Interface..21
d. ChannelScheduler Interface...21

4. Overview of Use..22
a. ID Schema...22
b. Channel Management...23
c. Talker-Listener Contracts...23
d. Component Design and Assembly ..25

B. USABILITY ANALYSIS OF AN API ...26
1. Usability Analysis Overview ...26

a. Test Plan Development ...28
b. Participant Selection and Acquisition....................................29
c. Preparation of Test Materials...30
d. Conducting Test ..30
e. Participant Debriefing ..31
f. Transformation of Data into Recommendations31

2. Difficulties of API Analysis ...33
3. Case Study of an API Analysis Using a Think Out Loud

Protocol ...34

III. API ANALYSIS METHOD ..37
A. TEST PROTOCOL ...37
B. TEST PLAN DEVELOPMENT ...38
C. SAMPLE PROJECT ...40
D. TEST PARTICIPANTS ..41

 viii

E. DATA ANALYSIS...42
1. Task Completion ..42
2. End-of-Test Question Responses ..43
3. Participant Comments...44

F. DEVELOPMENT OF RECOMMENDATIONS..44

IV. ANALYSIS OF CHANNEL API: BASIC COMPONENTS AND
COMPONENT ASSEMBLY ..47
A. TEST PLAN ...47

1. Test Purpose ...47
2. Test Objectives ...47
3. Subject Profile ..48
4. Test Method..49
5. Task List ...50
6. Test Environment and Equipment ...53
7. Test Monitor Role ..53
8. Evaluation Measures ...53

B. TEST RESULTS ..54
1. Summary of Task Completion..55

a. Task 1: Implementation of a Talker.......................................55
b. Task 2: Implementation of a Listener59
c. Task 3: Component Assembly Using a Channel63

2. Summary of End-of-Test Questions ...67
a. Listing of Questions ..67
b. Participant Response Statistics...69

3. Summary of Subjective Comments ..76
a. Comments Pertinent to Channel Model and Component

Assembly ..76
b. Comments Pertinent to Event Flow Model78
c. Comments Indicating Programmer Perception.....................79
d. Comments on Untested Features..80

C. RECOMMENDATIONS FOR API ENHANCEMENTS81
1. Design Enhancements..81
2. Documentation Enhancements ...82

V. ANALYSIS OF CHANNEL API: CHANNEL MANAGEMENT AND
FILTERING ...83
A. TEST PLAN ...83

1. Test Purpose ...83
2. Test Objectives ...83
3. Subject Profile ..84
4. Test Method..85
5. Task List ...85
6. Evaluation Measures ...89

B. TEST RESULTS ..90
1. Summary of Task Completion..90

a. Task 1: Use of ChannelManager Class90

 ix

b. Task 2: Implementation of a ChannelManagerAuthority97
c. Task 3: Joint Use of the ChannelManager and

ChannelManagerAuthority ..102
d. Task 4: Implementation of a ChannelFilter105

2. Summary of Subjective Comments. ...110
a. Channel Management...110
b. Filtering Process ...112

C. API ENHANCEMENTS ...113
a. Design Changes ..113
b. Documentation Changes..114

VI. CONCLUSIONS AND FUTURE WORK...117
A. CHANNEL API..117

1. Changes Made ..117
2. API Distribution...118

B. FUTURE WORK...118
1. Feedback from Large-Scale Use ...118
2. Redesign and Retesting of ChannelAccessAuthority119
3. Generalization of the Channel Model as a Pattern for

Component Based Design..120
4. Investigate Making Channel class Private.....................................120

APPENDIX A...121
TEST 1 PROJECT WRITE-UP ...121

Contact Tracking Application Project...121
TEST 2 PROJECT WRITE-UP ...123

Contact Tracking Application Project Redesign123

LIST OF REFERENCES..129

INITIAL DISTRIBUTION LIST ...131

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Possible Channel Model Component Configurations..7
Figure 2. Channel Model Event Flow ...8

 xii

LIST OF TABLES

Table 1. Channel Methods Used for Component Assembly..10
Table 2. Channel Methods for Talker/Listener Management ..11
Table 3. Channel Class Methods Used For Event Reception ..12
Table 4. Channel Listener Interface Methods..13
Table 5. ChannelEvent Class Methods ..16
Table 6. Channel Methods Used for Self-dispatching ...17
Table 7. Important ChannelManager Class Methods Overriding Channel Class

Methods..20
Table 8. Talker/Listener Component Contract ..25
Table 9. Test Subject Characteristics...49
Table 10. Subject Responses to End-of-Test Questions ..70

 xiii

ACKNOWLEDGEMENTS

 I would like to extend my appreciation to Dr. Geoffrey Xie for his help and

encouragement during the course of preparing this thesis and in completing the Masters

program at Naval Postgraduate School. In addition, I extend my appreciation to Dr.

Rudy Darken for his practical introduction to Human Computer Interface Analysis. And

to both, appreciation is extended for the guided freedom given in completing the study

contained herein.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. CHANNEL API ANALYSIS PROBLEM

An Application Programming Interface (API) is a library of methods that provide

programmers with access to predefined programming constructs and operations. An

example is the Java Swing API provided for development of a Graphical User Interface

(GUI) [Ref 4]; it provides an interface to the complex system operations necessary for

GUI design. APIs such as Swing are important tools for programmers in both the

civilian and military sectors. They abstract away many low level tasks thereby allowing

programmers to focus more on their own specific design goals. In addition, well

designed APIs provide reusable units of code that eliminate the need for programmers to

recreate the functionality represented by the API. This is perhaps the biggest benefit of a

well designed API.

Unfortunately, during the design of many APIs, more thought is given to the end

functionality than is given to ensuring the reuse or usability of the API. While common

Object Oriented practices and programming discourse rules help to balance functionality

with usability, APIs are generally seen as tools which are less important than the end

projects to which they are lending their support. Thus, many potentially useful units of

code are discarded, thereby defeating the reuse goal of Object Oriented Programming.

A possible two part approach to overcoming this wasteful employment of API

design is described here. The first part involves application of User Centered Design

(UCD) principles during the development of an API. This includes for example ensuring

that class, interface, and method signatures convey there purposes in efficient and easy to

learn manners so that the code describes itself. User Centered Design can also be applied

in the development of descriptive documentation. The second part is to employ human

factors analysis during and after API development. This involves usability analysis on

the API to identify where and why an API fails to present itself as a reusable tool.

This thesis is an exercise of the second part, usability analysis, to provide

enhancements to the user centered design efforts of the Channel API’s designer and, to

 2

provide input into the user centered improvements of the API documentation.

Specifically, this analysis will focus on the API’s ability to explain itself during first-time

exposure. It is the position of this paper that success of the API is dependent on its

presentation during first-time exposure; if the API and its documentation do not explain

its functionality quickly, then the API will likely not gain acceptance.

The Channel API is a well developed and reusable Java Package. It incorporates

well known programming principles such as event-based programming and loose-

coupling of components; and, it is a very powerful tool for use in Component1 Based

Design (CBD) projects. The designer put much effort into ensuring that the functionality

of the API is efficient. In fact, in the thesis that contains the API, there is a thorough

technical analysis of the API with respect to communication metrics such as throughput

and delay [Ref 1]. However, this analysis did not include any usability testing, which is

needed to ensure the API will be utilized if made available to the public.

The API author did consider some UCD principles during its design. For

example, the requirement for an API to incorporate meaningful method names, class

names, and method signatures2 was discussed in the thesis [Ref 1]. However, none of

these design qualities underwent any usability testing. Additionally, learnability and

comprehension of the underlying Channel Model was not tested; and, the learnability

impact of abstracting event-based programming within a message like model was not

considered or tested.

An immediately noticeable deficiency in the presently available Channel API is

its inadequate documentation. The majority of the class, interface, and method comments

found in the documentation are not helpful and do not promote usability. For instance,

they do not contain any useful descriptions of their purposes or uses. Instead, they only

contain one to a few lines of minimally descriptive text, which were most likely more

useful to the author during design than to any potential users. Usability analysis will

1 Components in this paper refer to code modules in a single application not to stand-alone processes;
and, Component Based Design is the development and assembling of these code modules in a single
application.

2 The term method signature refers to the return type, name, parameter types, and parameter order of a
method. This term is synonymous with the term function prototype commonly used in C/C++ discussions.

 3

allow the identification of where better documentation, examples, and explanations are

required. In addition, an overview of the Channel API is needed as part of its

distribution. This may be in the form of a user’s manual, a progressive example, or both.

B. MOTIVATION AND BENEFITS OF THESIS

It is desired by the thesis sponsor to release the Channel API to the public. This

does not sound difficult. One needs to simply place the class files on a web-page and

perhaps provide some HTML pages as documentation. However as with many publicly

available APIs, the difficulty in learning and using the API will likely deter programmers

from wanting to use it. Thus, the Channel API will sit on the shelf of a library and never

realize the purpose for which it was designed. Therefore, the main intent of this thesis is

to identify enhancements to the API that will produce a more usable version that supports

rapid learning and promotes reuse.

Another intention is to present an example of the usability analysis of an API.

This thesis will employ a published method of API analysis and will use well known

methods of HCI usability analysis. This example will contribute to the field of HCI by

providing a further case study of usability analysis on an API.

In addition, the results of the usability testing will reveal how programmers can

employ user centered design principles when developing APIs. This will include useful

commenting of methods to enhance comprehension, application of naming conventions

to enhance learnability, and overview documentation requirements to enhance the

comprehension of the underlying API model.

C. ORGANIZATION OF THESIS

The remainder of this thesis is organized as follows. Chapter II provides

background information on the Channel API and application of HCI usability analysis

methods to an API. The latter summarizes the key points of a published API testing

protocol followed in this paper. Chapter III provides an overview of the analysis method

used in this paper. Chapter IV describes the Channel API analysis with respect to basic

 4

API functionality; this chapter includes the test plan, the test results, and the

recommended enhancements for the API. Chapter V, like Chapter IV, describes the

analysis of the Channel API, but, this time with respect to advanced functionality of the

API. Finally, Chapter VI concludes the thesis discussion and introduces possible follow

on work.

 5

II. BACKGROUND INFORMATION

This chapter provides an overview of the Channel API and an introduction to the

application of usability analysis to an API.

A. DESCRIPTION OF CHANNEL API

This section is an introduction to the Channel API. This introduction includes an

overview of the underlying model employed by the API, a description of the basic classes

and interfaces found in the API, a description of its advanced classes and interfaces, and

an overview of the suggested use of the API. The information provided here is a result of

extensive use of the API in conjunction with examination of documentation and source

code.

1. Channel Model

The Channel API is designed around the model of a communication channel

which may have multiple talkers and listeners. With this model, the Channel API

incorporates two programming concepts. The first is Component Assembly, which

involves providing a means of assembling separately developed components into a larger

application. For the Channel API, this function is performed with instances of the

Channel class, which accepts registration by talker and listener components. The second

concept is Event-Driven Data Flow, in which an object experiencing an event pushes the

event or data off to another object for processing. The Channel API implements this

concept through the flow of event objects from talker to channel to listener objects.

 6

a. Component Assembly

The Channel Model contains three main components. They are talkers,

channels, and listeners. Talkers are developed as event producers and listeners are

developed as event consumers. Channels are used to assemble or associate talker and

listener components. This association occurs when talkers and listeners register with a

channel. It is then the channel’s responsibility to control all the interaction between its

registered talkers and listeners.

 The relationships between the talkers, listeners, and channels in the

Channel model may be one to many, many to one, or one to one in nature. Both talkers

and listeners may register with many channels or a single channel depending on how the

programmer wishes to assemble them within an application. Conversely, a channel may

have one or many talkers and listeners. In addition, a channel may itself become a

listener on another channel, thereby allowing the piping of events from one channel

system to another. All of these relationships may change during program execution in

any manner desired.

By viewing the channel as a connection point between talkers and

listeners, these same types of relationships may be expressed between talkers and

listeners. For example, a talker may push events to a channel that in turn delivers these

events to many listeners; or, many talkers may push events to a channel that delivers

them to a single listener; these numerous possible configurations give programmers great

flexibility in how they assemble components in an application. In addition, the channel

removes the necessity for the talkers and listeners to be tightly coupled3. Some possible

component configurations are shown in Figure 1 below.

3 Tight Coupling describes the relationship between two objects which have strong dependencies on

each other either physical with references to one another, operational with reliance on operations of one
another, or both.

 7

Figure 1. Possible Channel Model Component Configurations

b. Event-Driven Data Flow

Event-Driven programming is a well known and easy to follow concept.

In it, a producer object creates events and pushes them off to a consumer object. The

consumer then performs any required processing of the event. In the Channel Model,

talkers perform the role of event producer and listeners perform the role of event

consumer. The channel acts as a kind of event switchboard that allows delivery of events

to multiple consumers, reception of events from multiple producers, and event

scheduling.

Once a pair of talker and listener components is assembled, the talker, as

event producer, initiates all interactions when it experiences and pushes an event to a

channel. The channel then determines which of its listeners requires delivery of the event

and delivers it to them. Finally, the listener, as event consumer, receives the event from

the channel and performs the required processing. This simplex flow of events can occur

in conjunction with any of the described component configurations already discussed.

Channel Listener

Many to One
Many Talkers to one Channel and Many Talkers to one Listener

Talker
Talker

Talker
Channel Listener

Many to One
Many Talkers to one Channel and Many Talkers to one Listener

T
T

Talker

Talker

Channel

One to Many
One Talker to many Channels/Listeners

 8

Figure 2 below depicts the flow of an event, e, from talker to channel to listener in a

simple one to one component structure.

Figure 2. Channel Model Event Flow

Although the events flow in a simplex fashion, duplex communication

may be achieved due to the API’s extensibility. Since any Java Object can fulfill the role

of talker, the listener objects can function as talkers on the same channel or on a different

channel for the purpose of sending events back to the original talker, which would itself

implement the ChannelListener interface.

The combination of this event-driven flow of application specific data

objects with the flexible component assembly mechanism allows the functionalities of the

model’s producers and consumers to remain completely separate. The talkers may

produce and pre-process the events in any way required by the application and continue

on in its purpose after pushing the events off to one or more channels. Likewise, the

listeners may consume and process events without any concern or knowledge of the

talker’s purpose or existence. This makes the Channel API a powerful tool for support of

component based design projects.

2. Basic Objects

The basic objects used in the Channel API follow directly from the description of

the Channel Model. There is a Channel class that is instantiated to produce channel

objects; there is a ChannelListener interface that must be implemented by any user

defined class that is to perform the role of listener; there are talker objects, which may be

any Java Object; and, there are event objects which may be any Java Object or an

Listener Talker Channel e e

e occurs

 9

instance of the pre-defined ChannelEvent class. The following sub-sections describe

each of these basic objects.

a. Channel Class

The Channel class is the central class used for the basic functionality of

the Channel API. Its main purpose is to assemble talker and listener components. Its

main functions are talker and listener management and event reception and delivery. The

Channel class fulfills these functions through the use of both built in and customizable

classes and interfaces.

The assembling of talker and listener components is achieved through the

use of channel specific IDs and various add methods. Every channel in an application is

assigned a unique integer ID. This ID is set when the channel is instantiated. The ID

allows programmers to identify channels for specific purposes, and is used when a talker

or listener is added to a channel. This static ID allows programmers to associate multiple

talkers and multiple listeners with a channel without knowing having to know the

dynamic physical reference to the channel object.

Additionally, talkers and listeners are registered with a channel through

the use of multiple add methods. These add methods allow programmers to set priorities

and filters when a talker or listener is registered or to let the channel set these attributes as

defaults. The Channel class methods used to assemble talkers and listeners as well as

those that allow programmers access to them, are contained in Table 1 below.

 10

Method Name Arguments Description

Channel int channel_ID Constructor that creates a Channel

with a specific ID.

Channel int channel_ID,

ChannelScheduler

Constructor that creates a Channel

with ID and custom Scheduler.

addListener ChannelListener Used to add a single Listener to a

Channel.

addListener ChannelListener,

int priority

Adds a Listener with a priority.

addListener ChannelListener,

ChannelFilter

Adds a Listener with a filter.

addListener ChannelListener,

ChannelFilter,

int priority

Adds a Listener with a filter and a

priority.

addListener ChannelListenerItem Adds a Listener encapsulated in a

ChannelListenerItem.

addTalker java.lang.Object Adds any java Object as a Talker.

addTalker java.lang.Object, int priority Adds a Talker with an assigned

priority.

Table 1. Channel Methods Used for Component Assembly

Talker and listener management is done internally by the Channel class.

A channel object keeps an internal listing of registered talkers and listeners. These

listings are available to programmers through the use of get methods, which return Java

 11

Vectors containing all the registered talkers or listeners. In addition, the Channel class

provides methods for testing if either of the listings is empty. For individual talkers or

listeners, the class provides methods to check if the object is registered with the Channel.

Method Name Arguments Return Type

getListeners None java.util.Vector

getTalkers None java.util.Vector

hasListeners None boolean

hasTalkers None boolean

isRegisteredListener ChannelListener boolean

isRegisteredTalker java.lang.Object boolean

removeListener ChannelListener boolean

removeTalker java.lang.Object boolean

Table 2. Channel Methods for Talker/Listener Management

Event reception is straight forward and involves only basic objects. A

channel receives an event when a registered talker invokes one of the channel’s talk

methods. These talk methods allow a talker to push events to a channel in a variety of

ways. A Talker may push a pre-defined ChannelEvent object, a generic Java Object, or a

generic Java Object with a specified priority. If the pushed event is a generic Java

Object, then the Channel encapsulates it in a ChannelEvent. These talk methods are listed

in Table 3 below.

 12

Method Name Arguments Description

talk ChannelEvent Delivers a ChannelEvent object to

the channel.

talk java.lang.Object talker,

java.lang.Object event

Delivers the talker object and an

event that is a generic Java Object.

talk java.lang.Object talker,

java.lang.Object event,

int priority

Delivers the talker and event Object

in addition to an event priority.

Table 3. Channel Class Methods Used For Event Reception

Event delivery involves both basic and advanced objects of the Channel

API, and is customizable using advanced features. The advanced features are discussed

in depth in later sub-sections, and are mentioned only briefly here. A channel uses an

internal dispatcher thread to deliver the events pushed to it from all its talkers. In its

simplest form, delivery is accomplished when a channel’s dispatcher thread calls a

listener’s receiveEvent method using a default scheduler object. This happens inside the

channel and is not accessible to programmers. However, the Channel API offers

programmers two interfaces to customize the event delivery process.

The first interfac interface is the ChannelScheduler interface.

Implementation of this interface allows programmers to define how events are scheduled

for delivery. Programmers may define any scheduling algorithm desired and may base

scheduling on any event attribute desired. This customized scheduler is set when a

channel object is instantiated and replaces the default FIFO Scheduler.

The second interface is the ChannelFilter interface. Implementation of

this interface allows programmers to specify which events are delivered by a channel to a

specific listener. A filter object is associated with a specific listener object; this

association may occur when a listener is added to the channel or afterwards with a call to

 13

the channel’s addFilter method. A filter may also be removed, thereby stopping the

filtering process for the associated listener.

The channel also provides a self-dispatching mechanism for listeners.

This feature allows the channel to assign a thread to a specific listener for event delivery.

Events are then delivered by this thread instead of by the channel’s dispatcher. This is an

advanced feature and is discussed more in depth in the section on advanced objects.

b. Channel Listener Interface

Components fulfill the role of listener through implementation of a simple

Java interface, ChannelListener. This interface requires implementation of a single

method, receiveEvent(ChannelEvent event). The method is invoked by a channel object

when delivering an event to a registered listener. The channel delivers the event inside of

a ChannelEvent object, which may be unpacked by the listener.

As simple as the interface is, there is a synchronization issue that must be

considered. Since a listener may register with multiple channels, it is possible that more

than one channel may call the listener’s receiveEvent method simultaneously. In order to

avoid this, the method should be synchronized. This will ensure that only one channel

invokes the method at a time.

Method Name Arguments Description

receiveEvent ChannelEvent Called by the channel to which a

listener is registered to deliver an

event to the listener.

Table 4. Channel Listener Interface Methods

 14

c. Talker Objects

Any Java Object may fulfill the role of talker. There is no interface to

implement. However, a talker must be registered with a channel in order to talk on it.

This is accomplished with the channel’s addTalker methods. Also, talker components

push events to a channel using the channel’s talk methods. The event pushed may either

be a Java Object or an instance of ChannelEvent.

d. Encapsulation Classes

There are two encapsulation classes used in the Channel API. The first is

the ChannelEvent class, which is used by the talker, channel, and listener components.

The second is the ChannelListenerItem, which is used by the channel and listener

components.

The ChannelEvent class is used to encapsulate events. The attributes of a

channel event are talker, event, and event priority. The talker and event may both be

generic Java Objects and are both required to create a ChannelEvent. The event priority

is an integer value assigned to the event; it is assigned a default value when it is not

provided at creation. However, a method is provided to set the priority when desired.

The ChannelEvent is used by three API components. The channel uses

the ChannelEvent to encapsulate all events when pushed to it by a registered talker; and,

the channel uses it to deliver events to registered listeners. A talker may use the

ChannelEvent to encapsulate the events it pushes to a channel; and, a listener processes it

upon receiving it from the channel. The ChannelEvent class provides a number of

methods for setting and getting access to its data members and for accessing attributes

associated with its creation and handling. Table 5 below contains these methods and

their uses.

 15

Method Name Arguments/Returns Description

getEvent Returns: java.lang.Object Provides access to the

encapsulated event object;

used by channels for

filtering and by listeners for

processing of received

events.

getEventClass Returns: java.lang.Class Provides access to the event

Class; used by channels for

filtering and by listeners for

processing of received

event.

setEventPriority Takes: int Sets the priority for the

encapsulated event object;

used by talker when

packaging an event for

pushing to channel; and,

used by channel when it

receives an un-encapsulated

event.

getEventPriority Returns: int Returns the event’s priority;

used by channel for

scheduling and listener for

processing.

getTalker Returns: java.lang.Object Provides access to the

encapsulated talker object;

used by channel for filtering

and the listener for

 16

processing of received

events.

getTalkerClass Returns: java.lang.Class Provides access to the

encapsulated talker’s Class;

used by the channel for

filtering and the listener for

processing of events.

getTalkerPriority Returns: int Provides access to the

talker’s priority; used by

channel for scheduling.

setTalkerPriority Takes: int Sets talker priority; used by

talker and channel.

getTimeStamp Returns: long Provides access to the

system time as set by

channel at reception of an

event.

Table 5. ChannelEvent Class Methods

The ChannelListenerItem is used to encapsulate information about a

listener. This information includes the ChannelListener object itself, its ChannelFilter

objects, and its priority. The Channel class uses this container class to store its associated

listeners and information about them. This storage takes place when a listener registers

with the channel. The listener may be registered pre-encapsulated in a

ChannelListenerItem or un-encapsulated; either way, the channel will store the listener in

this encapsulation class.

This class is also involved in the self-dispatching mechanism for listeners.

This feature allows events to be delivered to a listener using a dedicated thread instead of

the channel’s own dispatching thread. Self-dispatching is started, stopped, suspended, or

resumed for a listener with calls to Channel class methods. When self-dispatching is

 17

started, the ChannelListenerItem acts as the dedicated thread; it allocates a queue into

which the Channel object can place incoming events. This is possible due to the class’

implementation of the Java Runnable interface. When events arrive to the channel

destined for a listener, the channel places them into the queue rather than delivering them

with the receiveEvent method defined in the ChannelListener implementation. The

purpose for self-dispatching is to avoid delays which may occur when a listener takes an

excessive amount of time to receive an event.

Method Name Arguments/Returns Description

startListenerselfDispatch Takes: ChannelListener,

Returns: boolean

Used to start self-dispatching

for a listener.

startListenerselfDispatch Takes: ChannelListener,

int queueLength

Returns: boolean

Used to start self-dispatching

for a listener with a

customized queue length.

suspendListenerselfDispatch Takes: ChannelListener Used to temporarily suspend

self-dispatching for a

registered listener.

resumeListenerselfDispatch Takes: ChannelListener Used to resume self-

dispatching for a registered

listener.

stopListenerselfDispatch Takes: ChannelListener Stops self-dispatching for a

registered listener.

Table 6. Channel Methods Used for Self-dispatching

 18

3. Advanced Objects

This sub-section describes the advanced classes and interfaces contained in the

Channel API. They provide mechanisms for programmers to manage channels, define

scheduling routines for event delivery, and to define filters for listener reception of

events. Each of these mechanisms is introduced with its corresponding class or interface.

a. ChannelManager Class

The ChannelManager class is provided as a predefined and centralized

tool for managing channels in an application. This involves overriding all the Channel

class methods with an additional channel ID parameter, which allows reference to a

channel using the ID alone. Thus, the registering of talker and listener components with

a specific channel and talking on a specific channel is mediated by the channel manager.

Use of the channel manager is a more efficient means of using the

Channel API than the means available using only basic objects. Instead of the

programmer writing code to create and track all the channels in an application, the

channel manager does the work already. This feature is intended for large applications

containing many channels.

One subtle feature, which is to be the focus of the testing in this thesis, is

the way in which the channel manager creates channels. Currently, this happens when

the first call to add a talker or a listener is made with a specific ID. At this call, the

channel manager checks to see if a channel with the specified ID exists yet. If it does

then the add method executes the same as in the channel class; if the channel does not

exist, then it is created with the specified ID.

As seen in the constructors shown in Table 7, a ChannelManagerAuthority

may be provided to the channel manager when it is created. When present, the manager

uses the authority to enforce access rules for channels. The ChannelManagerAuthority is

an interface and is described in the next sub-section.

The following table contains a sample of the ChannelManager class

methods which over-ride the Channel class methods.

 19

Method Name Arguments Description

ChannelManager None Constructor that creates a channel

manager.

ChannelManager ChannelManagerAuthority Constructor that creates a channel

with an authority object to provide

access control.

addListener ChannelListener,

int channel_ID

Used to add a single listener to a

channel.

addListener ChannelListener,

int priority,

int channel_ID

Adds a listener with a priority.

addListener ChannelListener,

ChannelFilter,

int channel_ID

Adds a listener with a filter.

addListener ChannelListener,

ChannelFilter,

int priority,

int channel_ID

Adds a listener with a filter and a

priority.

addListener ChannelListenerItem,

int channel_ID

Adds a Listener encapsulated in a

ChannelListenerItem.

addTalker java.lang.Object,

int channel_ID

Adds any java Object as a talker.

addTalker java.lang.Object, int priority, Adds a talker with an assigned

 20

int channel_ID priority.

talk ChannelEvent,

int channel_ID

Delivers a ChannelEvent object to

the Channel.

talk java.lang.Object talker,

java.lang.Object event,

int channel_ID

Delivers the talker object and an

event that is a generic Java Object.

talk java.lang.Object talker,

java.lang.Object event,

int priority,

int channel_ID

Delivers the talker and event Object

in addition to an event priority.

Table 7. Important ChannelManager Class Methods Overriding Channel
Class Methods

b. ChannelManagerAuthority Interface

This interface is a troublesome feature of the API and is to receive a lot of

attention in the usability analysis contained in later chapters of this thesis. The intent of

the interface as explained by the designer in his thesis is for an implementation of the

authority interface to control and organize all channels and its participants in a

centralized manner [Ref 1]. However, the methods required in the interface imply an

access control role instead of an organizing role. In addition, the method names and

arguments do not appear to be capable of providing the level of control implied.

The five required methods are as follows:

• boolean isTalkerAuthorized(java.lang.Object talker , int channel_id)

• boolean isListenerAuthorized(ChannelListener listener, int channel_id)

• int getTalkerPriority(java.lang.String talkerClassName)

• int getListenerPriority(java.lang.String listenerClassName)

• ChannelScheduler getSchedulerForChannel(int channel_id)

 21

The first two methods seem to function well for access control since their

arguments target a specific talker or listener on a specific channel. However, the second

two ask for a priority for a talker or listener but their arguments do not allow specification

of a specific talker or listener and no way of targeting a specific channel. In addition, it is

not apparent why a channel’s scheduler would be required for access control.

It is assumed that the function of this interface is access control; however,

this is not apparent from the thesis’ description and does not seem efficiently possible

with the method arguments. Thus, discussion of the interface’s purpose and required

enhancements are left until after the usability analysis is completed.

c. ChannelFilter Interface

This simple interface allows for an implementing class to define a filtering

mechanism for screening events prior to their delivery to a listener. A filter is associated

with a specific listener when it registers with a channel or later with a call to an add

method. A list of filters for each listener is stored with the filter inside a

ChannelListenerItem by the channel object to which a listener is registered. When an

event arrives to the channel, it polls each of its listeners to determine which of them to

deliver the event to. During this poll, if a listener has one or more filters, then the filter is

applied to determine if the event gets delivered to the listener or not; and, if no filters are

present then all events are delivered to the listener.

A predefined filter class is provided in the Channel API in the form of the

ChannelEventFilter Class. It demonstrates the filtering mechanism and gives examples

of the various class attributes that may be used for filtering.

d. ChannelScheduler Interface

This interface allows the programmer to define how a Channel object will

schedule the delivery of events. When an event arrives to a channel, the channel

 22

encapsulates the event in a ChannelEvent object prior to pushing it to its scheduler. The

channel’s dispatcher then pulls events from the scheduler, leaving it to the scheduler to

define the event delivery order.

Every channel has a scheduler; it is either a custom defined class, which

implements the ChannelScheduler interface, or, it is a default FIFOScheduler. A custom

scheduler is set for a channel as a parameter to the Channel constructor; and, a default is

set when no such parameter is provided. The Channel API provides three pre-defined

implementations of the ChannelScheduler interface; they are, the FIFOScheduler, used as

default, the PerTalker_RR_Scheduler, and the PriorityScheduler.

The two required methods for this interface are:

• void push(ChannelEvent event)

• ChannelEvent pull()

4. Overview of Use

This section provides an overview of the suggested use of the Channel API. The

use is explained with respect to using the API in a component based design project.

When using the Channel API in such a project, application design involves development

of three types of components; the first type is the talker components, which will produce

event objects; the second is the listener components, which will received and process the

event objects; and, the third is the main application that will assemble the first two types

of components using a channel manager and channels.

a. ID Schema

The communication within the Channel Model is designed to eliminate the

necessity of talker and listener components having physical reference to a channel object.

This is possible through the use of channel IDs. When a talker or listener interacts with a

channel via a channel manager, they do so using only the channel ID. This allows for the

association between talkers and listeners with a channel to be dynamic; and, eliminates

the passing of channel references between components.

 23

Thus, the first consideration when using the Channel API should be

definition of a channel ID schema. This schema will define unique channel IDs that

identify which channels talker and listener components will use. The schema is part of

the overall project specification and provides a communication contract between

developers of the talker/listener components and the developer of the assembling

application. For example, in a network simulation application all network flows of a

certain type could be assigned to Channel 5; and, all nodes that produce this type of flow

would be talkers that push events to Channel 5 and, all nodes that receive this type of

flow would be listeners on Channel 5.

b. Channel Management

The next consideration is how the application will manage channels. The

intent in the design of the Channel API is for a ChannelManager object to mediate access

to channels; however, there is also the option to create and manage channels without the

use of a channel manager and static channel IDs in a small application. This is a

cumbersome task in a large application as it adds to the responsibilities the of the

application designer since he or she must then track and manage all channels and their

associated talkers and listeners.

Thus, the recommended usage is for the assembling application to use the

ChannelManager class to assemble all talker and listener components. This provides a

predefined and centralized object to manage the channels. If it is desired, single channel

objects may be created and used for specific tasks.

c. Talker-Listener Contracts

The Channel API allows loose coupling of talker and listener components.

They do not have to wait on each other during execution; and, they do not require

reference to each other’s methods to coordinate in an application. However, talkers will

be responsible to produce specific types of event objects and to deliver them to specific

channels; and, listeners will be required to receive and process specific types of events

 24

from specific channels. Thus, each talker and listener component should have a contract

specified to ensure that the overall application will function as desired when the

components are assembled.

For talker components, the contract includes definition of the types of

events it will produce, how the events will be packaged, and which channels to deliver

each event type to. From the discussion in the section on basic objects, it is recalled that

the talker may push any generic Java Object as an event. This event may be pushed

directly to the appropriate channels or, it may be encapsulated in a channel event object.

For listener components, the contract includes definition of the types of events it will

process, an explanation of how it should process the events, and which channels it will

receive the events from.

In addition, a listener may be designated as talker on specific channels

and, a talker may be designated as a listener on certain channels; thus, a list of channel

IDs and there their use for talking or listening is required in both contracts. A suggested

contract is given in the Table 7 below.

Channel ID Component Role

1 Talker

2 Talker

3 Listener

4 Listener

Listener Contract

Event Type

Received

Processing Required Channel Received From

AirContactData

Class Instance

Extract event from

ChannelEvent and process

coordinates.

3

 25

SurfaceContactData

Class Instance

Extract event from

ChannelEvent and process

coordinates.

4

Talker Contract

Event Type

Produced

Pre-Processing Channel Pushed To

AirContactData

Class Instance

Encapsulate in a

ChannelEvent object with

priority set to 5.

1

SurfaceContactData

Class Instance

Encapuslate in a

ChannelEvent object; if

CPA < 1,000 yards set

priority to 4 else let it

default to 0.

2

Table 8. Talker/Listener Component Contract

d. Component Design and Assembly

Once the channel ID schema and the talker/listener contracts are defined,

the next step is to design the talker and listener components to fulfill the contracts. This

is application specific and done in any way desired by the programmer responsible for

each component. The contracts and schema ensure that the components will fit into the

application as desired.

Since the component contracts are specified ahead of implementation, the

programmer responsible for implementation of the main application can create and

assemble the necessary talker and listener components while they are themselves being

implemented; this is a benefit of component based design. The Channel API provides the

 26

interface for the components to the overall application and for the interface to the

components for the assembling application. Thus, the API specific work required in the

main application is as follows:

• Create required talkers and listeners as instances of the classes that
implement the component contracts.

• Create a channel manager if desired.

• Create the channels within the channel manager at calls its add methods or
create them as needed.

• Register the talkers and listeners with the appropriate channels with calls
to the ChannelManager or Channel class add methods.

• Define the logic to support the interaction between the talker/listener
components and the channel manager or individual channels.

The last bullet is accomplished in one of two ways. The main application

may control all interaction by calling the talk methods; or, the talker components may be

implemented as threads that have reference to the channel or channel manager and push

the events with talk method calls on these references. The second is the suggested use as

it provides the highest amount of independence between the talker components and the

main application class.

B. USABILITY ANALYSIS OF AN API

This Section provides an introduction to usability analysis and its application to

an API. It includes sub-sections on usability analysis, difficulties of analyzing an API,

and a summary of an analysis performed on an API.

1. Usability Analysis Overview

This section is an introduction to the concept of usability analysis. It closely

follows the discussion presented by Jeffrey Rubin in his Handbook of Usability Testing

[Ref 3] where he explains how to plan, design, and conduct effective usability tests;

there, he discusses analysis of a product; here, his ideas are discussed with respect to

 27

analysis of an interface. This section is not an exhaustive definition of usability analysis.

For complete coverage of the subject, one should see the Rubin text or take a course

covering Human Computer Interfaces.

Usability analysis is an attempt to measure the usability of an interface based on

observation of human interaction with the interface. Testing methods seek to quantify

various aspects of the human-interface interaction in ways that can be examined to

provide improvements to the interface design. Usability testing differs from classical

scientific testing in that it seeks to determine deficiencies and fixes for them whereas

traditional research seeks to prove or disprove a hypothesis [Ref 3].

The commonly measured interface attributes are defined in the list below.

• Learnability

This is a measure of how easy an interface is to learn and how rapidly a user can
become productive with the interface.

• Efficiency

This is a measure of how efficient the interface is when used to perform the task it
supports.

• Memorability

This is a measure of the interface’s support for user recall of its functionality.

• Errors

This is a measure of error rate experienced by users during use of the interface
and the interface’s support for user recovery from the errors.

• Satisfaction

This is a measure of user’s subjective perception and acceptance of the interface.

In order to effectively measure these attributes, a controlled, planned, and

scientific test method is required. Such a method consists of the following elements [Ref

3]:

 28

• Specific problem statements or test objectives that define aspects of
interface to be tested.

• Participants representing the intended end users.

• Representation of the actual work environment.

• Observation of user interaction with the interface.

• Collection of quantitative and qualitative performance and preference
data4.

• Recommendations for improvements.

Using these elements, a test method is developed to analyze the interface. The

method may be designed for exploration, assessment, validation, or comparison of the

interface [Ref 3], with each method type occurring at a certain point in the interface

design and having specific objectives. For example, an exploration test may happen early

in the design process to test usability of design concepts; an assessment test may happen

midway through design to assess findings of the exploratory test and/or to test low-level

functionality; a validation test may happen late in design process to verify how the

interface or product measures against a defined set of usability standards; and, the

comparison test may happen at any time in design process to compare the product or its

design to make a comparison between two alternative designs or products.

Regardless of what type of test method is used, Rubin proposes six stages for

conducting a usability test [Ref 3]. These are listed and discussed in the following six

sub-sections.

a. Test Plan Development

Development of the test plan is the first and most important stage of the

test. This plan provides details of all subsequent stages of the test and encompasses all

the elements required in a usability test. Its purpose is to communicate the how, when,

where, why, who, and what of the test to all parties involved in the interface design; and,

4 Performance data are measures such as task timing and task accuracy whereas preference data are

measures of participant opinion such as responses to subjective questions.

 29

it provides a rigorous guide to keep testing on track [Ref 3]. Typical sections of a test

plan include:

• Discussion of Test Purpose

• Listing of Objectives

• Discussion of User Profile

• Discussion of Test Method and Design

• Discussion of Task List

• Discussion of Test Environment

• Discussion of Monitor Role

• Discussion of Measurable Data

• Discussion of Intended Output Report

b. Participant Selection and Acquisition

This stage of the usability test involves definition of the interface user

profile and acquisition of participants who match the profile. These activities include

characterizing the experience and abilities of intended users, categorization of these

abilities and experience levels, choosing the number of participants to test, competency

level of participants, participant compensation, and determination of where to find

participants. In addition, a means of screening participants is developed using the profile

characteristics.

Much thought must be given to the interface’s end users to ensure that the

right people are tested. Participants must possess the required knowledge level to interact

with the interface; they must possess the education level required to perform the tasks for

which the interface is designed; in short, they must be a true sampling of the intended

interface users. To ensure this happens, a means of screening participants must be

developed using the profile characteristics. For example, potential participants may be

asked to complete a questionnaire or to answer questions during an interview.

 30

c. Preparation of Test Materials

This stage of the testing involves preparation of materials used to screen

participants, collect data, and collect data from participants. Typical test materials and

their uses are:

• Participant Screening Questionnaire: used to ensure participants match the
user profile.

• Session Script: used to ensure that the test is delivered to every participant
in the identical manner.

• Data Collection Forms: used to record both performance and preference
data.

• Consent Forms and Non-Disclosure Agreements: used for legal purposes
to gain participant permission for session recording and to protect
proprietary product information.

• Task Scenarios: used to present the task list contained in the test plan to
the participants; these are tasks representing interface features embedded
in scenarios that duplicate actual use cases.

• Debriefing Guidelines: used to give structure to the debriefing session,
which ensures that the subjective data can be quantified in some manner.

d. Conducting Test

This stage of the usability test is the delivery of the test method discussed

in the test plan in a scripted step-by-step manner. The steps involved are test specific;

however, they must be delivered in the same way for every participant. Rubin suggests

using a series of three checklists to guide test delivery [Ref 3]. The first checklist is

applied approximately two weeks before testing begins and is used to shake out any bugs

in the test delivery; it requires that the monitor take the test, deliver the test to an initial

test subject, correct any errors in the test materials, and secure the necessary equipment

and environment. The second checklist is applied the day before testing. It prompts the

monitor to setup the equipment, assemble materials, and confirm scheduled participants.

The final checklist is applied on the day of the test. It is a step-by-step list of events for

the test session from greeting the participant to debriefing and dismissal.

 31

e. Participant Debriefing

This stage of the usability testing is the last opportunity to gather

information about a participant’s confusion during interaction with the interface. It

allows pointed questions with respect to unexplained mistakes; insight is gained through

interrogation of participants and review of their actions during testing [Ref 3]. To

accomplish this, the monitor must review the participant’s responses as recorded on

collection forms and ask him/her why a particular error was made.

For effective debriefing, Rubin suggests the following guidelines [Ref 3]:

• Avoid placing participant on guard with criticism.

• Do not react to a participant’s answers.

• Review data collection forms and post-test questionnaires.

• Begin by letting participant say whatever comes to mind.

• Begin questions from high-level issues.

• Move to specific issues found on collection forms and questionnaires.

• Focus on understanding the problems and difficulties experienced by
participant rather than on solving the problem.

f. Transformation of Data into Recommendations

This final stage involves reviewing the data to draw conclusions about

interface features and making recommendations to fix design flaws. This process

requires compiling and summarizing data, analyzing data, developing recommendations

and reporting recommendations [Ref 3].

Compilation of data involves organizing the data into a form that can be

analyzed for each task. Quantitative data can be placed into tables and charts. Hand

recorded responses can be transcribed into digital format and grouped. The goal is to

have all the data represented in a way that reveals patterns of behavior [Ref 3]. This

compilation can occur at the end of each test, end of each day, or at end of testing;

however, compiling data in-line with test sessions is advantageous since it allows the

monitor to confirm that the data matches the test objectives and to take advantage of the

freshness of the test in the monitor’s mind.

 32

Summarization of data is task oriented; it is a statistical analysis of both

performance and preference data for each task. Statistics for performance data are

computed using measurements of time and errors. For task timings, the mean, median,

range, and standard deviation of completion times are used to gain understanding of

participant performance [Ref 3]; and, errors and completion criteria are used to calculate

task accuracy statistics. Statistics for preference data are computed from questions,

comments, and debriefing sessions. For example, the number of positive or negative

responses to a subjective question about an interface is summed to measure user

satisfaction.

Analysis of data is also task oriented. Its purpose is to ensure that the

users can perform the tasks using the interface; it is accomplished using the following

activities [Ref 3]:

• Identifying the tasks which did not meet pre-defined criterion; these non-
criterion tasks will indicate where to focus the analysis.

• Identifying the errors or difficulties causing the tasks to fail.

• Conducting a source of error analysis to determine what part of the
interface caused the error.

• Prioritizing the problems by criticality to allow efficient translation of the
problems into solutions.

Rubin discusses the development and reporting of recommendations as

two distinct activities. For developing recommendations, he suggests focusing on

solutions which will have the most impact on the interface design, avoiding political

motivations, providing short and long term solutions, indicating areas that need further

investigation, and thorough discussion of all problem areas [Ref 3]. The intent is to

address the critical problems affecting the interface and to make practical suggestions to

their solutions.

Once the recommendations are finalized, a report should be written to

present the test and its recommendations. The report should cover three aspects; first, it

should explain why and how the test was prepared; second, it should explain what

happened during the test; and third, it should present the recommendations [Ref 3]. The

 33

first of these is the test plan with addition of any modifications; the second is a report on

the performance and preference data summaries made; and, the third is a discussion of

the recommendations.

2. Difficulties of API Analysis

An API is by definition an interface. It therefore represents a user’s point of

interaction with a product; and, like any other interface, it is difficult to measure its

usability due to the difficulty in measuring why people make mistakes and what they are

thinking when they make them. However, an API suffers from additional difficulties.

Since it provides an interface to an abstraction of a concept, it has no physical

representation to interact with aside from documentation; and, user interaction with it is

less tangible than with other types of interfaces.

The only means of representing an API is with examples and documentation.

These representations provide a layer of distraction between the user and the interface

and may interfere with analysis of the API if they are not well prepared. Examples are a

good representation of the API as they demonstrate the API in action and provide a

means of analyzing comprehension of its functionality and the ability of its methods and

classes to describe that functionality; however, examples are more of a tool for teaching

rather than a means of measuring the API’s usability since they do not involve actual use

of the API. Since the documentation contains the class and method names of the API and

are involved in the API’s use, they are necessarily the best interface representation to be

used for usability analysis; however, this requires distinguishing between mistakes

caused by the documents and those caused by the API; and, it requires including analysis

of the documentation as part of the testing.

In addition to the physical representation problem, the measurements available for

API analysis are more indirect than those available for other types of interfaces. With a

GUI, HCI specialists quickly define time limits for the discovery of a button as a measure

of the buttons effective positioning in a window. Likewise, they may count the number

of mouse clicks performed prior to clicking a button as an indication of the same

attribute. With an API, the measurements are more subtle. They involve measures of a

 34

user’s mental actions and are dependent on the user’s willingness to provide mention of

them. Thus, they require defining indications of the mental actions and forcing a user to

discuss his or her interaction in a way that measures those indications.

3. Case Study of an API Analysis Using a Think Out Loud Protocol

In an article entitled “Building More Usable APIs” that appeared in the IEEE

Software Journal, McLellan et al presented an analysis method that utilizes a think out

loud protocol to test usability attributes of an API [Ref 2]. They used the protocol to

capture subject interactions with the interface. The interface was represented as a

“contrived example” containing approximately 75 percent of the API functionality. The

subjects’ comments and actions were video taped for later review.

Their subjects were application programmers from the API’s target user group.

Specifically, the test targeted first time users who were familiar with the C and C++

programming languages, were familiar with general data exchange concepts, and were

overall experienced programmers [Ref 2]. Some of the subjects were familiar with the

specific data standards used in the API, while some were not; but, they made no

distinction between these two groups.

During the test sessions, subjects were asked to examine the contrived example

displayed in a text editor. They were encouraged to explain what they would need to

know about the API in order to produce the example themselves; and, they were allowed

to ask questions to the examiner whenever they became confused [Ref 2]. In addition, at

the end of the test sessions subjects were asked to speculate on what other features the

API would perform based on the functionality represented in the example; and, they were

asked to complete a questionnaire indicating satisfaction and perception.

 The test designers had determined through prior research that commented

examples could aide rapid learning of the API and could provide a means of measuring

usability. Their definition of usability required measurement of the following API

attributes [Ref 2]:

 35

• Ease of API Learning

• Efficiency of API Use for Specific Tasks

• Memorability of the API Method Calls

• Misconceptions or Errors Made by Programmers While Using the API

• Programmers’ Perceptions of the API

This study reached conclusions with respect to effective use of code examples to

describe API functionality and usability of the API and its documentation [Ref 2]. Their

conclusions on where and how to use examples were based on the end of test

questionnaire and subject comments. In the questionnaire, all of the subjects were able to

correctly describe additional API features. They contributed this success to their use of

pseudocode to quickly describe the code example’s use of API features and to help

programmers develop hypotheses about how the API functioned. The code example also

supported learning of the API’s purpose, its usage protocols, and its usage context [Ref

2].

To reach conclusions on the API’s usability, they looked for patterns during

review of the taped sessions. These patterns included questions raised by three or more

participants, long time spans spent on specific code segments, and number of questions

related to a code segment or method call [Ref 2]; these patterns gave indication of which

portions of the API would require explanation to support efficient use. Specifically, they

found that programmers wanted self descriptive code and, that violation of discourse

rules indicated necessary redesigns or documented explanations for the violations.

The benefit of their methodology is that it tests an API during development. This

allows usability issues to be addressed during design rather than accounted for in

documentation; and, it provides input for the development of reference documentation.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

III. API ANALYSIS METHOD

The analysis method used for this project combines the think-out-loud protocol

discussed in Chapter II with a well known usability test development method for

producing organized test plans. The protocol used here is based on the one described by

McLellan et al [Ref 2]; the procedure discussed in their paper is used as a basis for

developing the structure of the testing protocol and for determining suitable attributes to

be measured. The usability test development techniques are based on those found in

Rubin and summarized in Chapter II [Ref 3]; his techniques are used to structure the tests

into a well formed process for collecting the subject data and analyzing the output.

The combination of the two components into an analysis method is done for

practical reasons. The McLellan paper is one of few examples of a usability study

conducted on an API. Most interface analyses are done on GUIs and other traditional

interaction devices. It is therefore hard to find examples of API analysis. The test

development procedure described by Rubin is used for its clear and concise methods of

preparing, conducting, and reviewing usability tests. Thus, the combination of the two

into one analyses method is a natural choice based on available sources of reliable

procedures.

A. TEST PROTOCOL

The test protocol used for analysis of the Channel API is derived from the think-

out-loud protocol discussed in Section B of the previous chapter. As in the tests

performed there, programmers are exposed to the API’s functionality during a video

taped test session and their responses are used to gather usability information about the

API. However, instead of presenting programmers with a contrived example the test in

this paper presents them with a sample programming project.

The sample project requires programmers to complete a small component based

design project using the Channel API. The project encapsulates a series of tasks that are

designed to focus the programmers’ attentions on the tested functionality of the API. Its

 38

intent is to capture their first time exposure to the API. They do not actually write code

for the project; instead, they verbalize their thought process while considering the project.

Use of the sample project instead of a contrived example allows observance of actual use

of the API rather than examination of an example of its use. This allows collection of

data representing the programmers’ actual responses as first-time users of the API. These

data include comments indicating perception, comprehension, and recognition of

appropriate method calls, which indicate effective use of self-descriptive code during API

design. It also allows recording of the thought process the programmers follow during

actual learning of the API’s functionality.

In addition to the sample project, a series of end-of-test questions are given.

These require the programmers to respond without reference to the API documentation.

The questions are designed to test memorability of method, class, and interface names

and learnability of the API’s basic functionality and use. For example, a particular

question asks programmers to identify from a list the object which initiates the interaction

required to deliver an event. Their responses measure learnability and comprehension of

the API’s event-driven data flow model and the role of each class in that model. A

complete listing of the end-of-test questions and their purposes are contained in Section

B.2 of Chapter IV.

Together, the project, questions, and exit interviews provide the opportunity for

programmers to verbally express their thought process during and after use of the

Channel API. These verbal responses are recorded and later analyzed against predefined

criteria and hypotheses for each task. The results from this analysis answer the questions

defined by the test objectives, which are discussed in the context of the two test plans

described in the next section.

B. TEST PLAN DEVELOPMENT

It was desired to test a large portion of the Channel API’s functionality. In order

to avoid long test sessions and to reduce the complexity of the test, two test-sessions were

planned with each focusing on specific API functionality. For each session, a detailed

 39

test plan was developed using the procedure given in Rubin’s Handbook of Usability

Testing [Ref 3]. These test plans are presented in their entirety in Section A of Chapters

IV and V; an overview of their main components is presented in this section.

For each test plan, a list of objectives was developed indicating the specific

aspects of the Channel API to be tested. These objectives are in the form of questions to

be answered by observing subjects’ interactions with the API. For example, one

objective in the first test is to determine if method names and signatures convey their

purpose in the Channel Model; and, in the second test, an objective is to determine the

perceived purpose of the ChannelManagerAuthority. These objectives are used to focus

each test on specific areas of interest.

Once the objectives were finalized, a task list was developed which prompts

subjects to investigate the features targeted by the objectives. Each task embodies a

portion of the test objectives. For clarity, each task is accompanied by a list of goals, a

list of test criteria, and a list of hypotheses. The goals represent one or more of the

objectives to be met by the task. The test criteria indicate actions to be demonstrated by

subjects during task completion. And, the hypotheses are statements of the expected

outcomes for each task.

The test criteria play an important part in the collection of subject data. They

provide a means of measuring the subject’s ability to complete each task using the API;

and, they provide a means of specifying the API features that must be understood for task

completion to be successful. To develop the test criteria, consideration was given to the

interaction that would result between the user and the API during task completion. The

methods, classes, interfaces, procedures, and documents that would be encountered were

analyzed to determine how they would be used to convey the API’s intended use to first-

time users quickly and efficiently. These API attributes were then compared to the test

objectives and those that gave insight to the objectives were worded as test criteria.

The hypotheses are used to develop focal points to aide in comparing expected

problem areas to actual test results for the purpose of quickly identifying required

enhancements. For example, one hypothesis predicts that a class comment will cause

 40

confusion and suggests an enhancement to remove the confusion. Once the testing is

complete, the outcome of the task is compared with the hypothesis; and, if the outcome is

as predicted, then the proposed enhancement is available for immediate consideration.

The first test-session and its test plan are designed to analyze the basic

functionality of the Channel API. This includes the Channel Model, component

assembly mechanisms, and the event-driven data flow model. The task list is comprised

of three tasks, one to expose subjects to the role of the talker, one to expose them to the

listener role, and one to expose them to component assembly using the Channel class.

The objectives and test criteria are presented in Sections A.2 and A.5 of Chapter IV. This

first test plan also makes use of the end-of-test questions discussed in the Protocol

Section of this chapter.

The second test plan is designed to analyze advanced API features provided for

channel management and filtering. Its task list is comprised of four tasks. The first three

expose subjects to channel management using the ChannelManager class, channel

management using the ChannelManagerAuthority interface, and channel management

using both the manager and the authority jointly. The final task exposes subjects to the

API’s filtering mechanism. The objectives and test criteria are presented in Sections A.2

and A.5 of Chapter V. This test does not make use of the end-of-test questions.

C. SAMPLE PROJECT

The tasks contained in the test plans are embedded in a simple component based

design project. This project asks programmers to develop a shipboard contact tracking

application. In the first test, they are instructed to develop a SensorInput class and an

InputProcessor class. The first is to act as a talker component and the second is to

perform the role of listener. They are given a brief description of the Channel API’s

talker, channel, and listener objects and told to use the API to assemble their two classes.

For the second test, the project is a continuation of the first. Subjects are instructed to

redesign the tracking application to make use of various Channel API features provided

for management of multiple channels and for filtering.

 41

Each project divides its tasks into smaller sub-tasks, with each representing one or

more of the test criteria listed in the test plans. The project as presented to the

participants is located in Appendix A in the sections entitled Test 1 Project Write-Up and

Test 2 Project Write-Up.

The goal of the sample project was to present subjects with an actual use scenario

requiring them to examine the available representation of the interface. This required

them to learn both the underlying model used by the API and how to implement the

model in an actual project, which are both necessary for acceptance and efficient use of

the API. Thus, the use of this sample project in conjunction with the think out loud

protocol allows measurement of the API’s status with respect to the goals of reuse and

rapid learning.

D. TEST PARTICIPANTS

There were three main qualities required of the test participants: they had to have

experience in the implementation of Java interfaces; they had to have experience using

Java APIs; and, they had to have basic understanding of Object Oriented Programming.

To ensure these qualities were met, participants were screened using a questionnaire.

The complete listing of the user group characteristics is presented in Table 5 located in

Section 3 of Chapter IV.

A group of four subjects for the first test and five for the second were selected,

with four of the second five returning from the first test. The subject group consisted of

Java programmers with between one and five years of programming experience. All

were Masters Students in a Computer Science Curriculum, with some also holding

undergraduate degrees in Computer Science.

The wide range of programming experience was desired to provide various levels

of feedback in response to the first time exposure to the API. The least experienced of

the group struggled more with and made suggestions to improve learnability of the low

level aspects of the API such as object interaction and method calls, whereas the most

experienced programmers delved into actual design aspects of the API such as threads

 42

involved in dispatching and the multi-casting involved in the filter mechanism. This

extreme range allowed for measurement of first time exposure for the entire spectrum of

target users.

The quality of first time exposure is present in the test for two reasons. First, the

API is new and it would require additional time to prepare subjects as experienced users

of the Channel API; thus, the quality is practically unavoidable. However, it is also an

important quality for measuring the success of the Channel API. It is the position of this

paper that the impression made by the API during first time exposure has a great impact

on reuse. If a programmer has a choice not to use the API and the API is hard to learn

then he/she will likely seek alternatives. Thus, it is important that the participants in the

test be first time users of the Channel API.

E. DATA ANALYSIS

Results appear in three forms, task completion, responses to end-of-test questions,

and participant comments made during both task completion and post-task debriefing.

The first two result forms are considered performance data and the third form is

preference data. Each form is analyzed according to the procedures recommended by

Rubin [Ref 3], which includes compilation, summarization, and pattern analysis of data.

Each result form and the procedure used for its analysis are presented in the following

subsections.

1. Task Completion

This performance data is in the form of binary test criterion responses. During

task completion, the examiner observes a subject to determine if a series of test criteria

are satisfied; the result of the observation, yes or no, is recorded on a data collection

form. An example of this is whether or not a subject identified the correct method to use

to complete a sub-task. Each of the criteria represents a necessary subject action for

successful task completion.

 43

Once all sessions for a specific test are complete, the results are grouped by sub-

task and placed in a table with subjects as column headings and criteria as row headings.

The binary results for each criterion are then analyzed according to the percentage of

participants with positive responses and the percentage of participants with negative

responses. These percentages give indication of task accuracy. Implications of necessary

enhancements due to task accuracy are then discussed. This procedure is applied in

Section B.1 of Chapter IV and V for Test 1 and 2 task completion data respectively.

The implications are discussed with respect to objectives for the specific task and

the hypotheses made for its outcome. If the predicted outcomes are found true, then the

enhancements proposed in the hypotheses are reconsidered, with possibly different

changes arising. If the predicted outcome is found false, then the successful attribute is

explained. For example, it was thought that the API’s abstraction of event-driven

programming would cause confusion, which did not occur.

2. End-of-Test Question Responses

This performance data is represented by subjects’ question responses, some

multiple-choice and some fill-in-the-blank. Responses from all subjects for all questions

appear alongside the correct responses in Table 6 located in Section B.2 of Chapter IV.

This data is analyzed one question at a time. The purpose of each question is

listed as usability attributes and metrics. Participant response statistics are then listed as

the percentage of participants whose responses represent positive measurement of each

purposed attribute. These statistics are followed by their implications for enhancements.

This procedure is applied to data for Test 1 only and appears in Section B.2 of Chapter

IV.

The implications are made with respect to memorability, learnability,

comprehension, and perception of the Channel API. The questions are only used in the

first test, so all of the listed attributes indicate first time exposure to the API.

Specifically, they indicate problem areas that may deter novice and experienced first time

users from continuing to use the API. The first group may discontinue use if they are not

 44

quickly able to comprehend the overall functionality of the API and the second group

may discontinue its use if the API does not quickly explain itself.

3. Participant Comments

Participant comments are considered preference data. They may be very

subjective in nature, yet when grouped, they give indications of problem areas, subject

perception, and learnability issues. In addition, the comments may indicate why a

particular sub-task suffers from a low task accuracy percentage. For example, a sub-task

that required subjects to identify a sequence of method calls may suffer from a low

accuracy percentage without an identifiable cause until review of a single comment

indicates that the method descriptions conflict with the functionality implied by the

method names.

To analyze the comments, they are placed into groups according to which aspect

of the test they pertain to. The comments are used both as stand-alone input to design

and documentation enhancements as well as together with the performance data to verify

recommended enhancements. The stand-alone input arises from recurrent comments

made by three or more subjects; this measure is adopted from the API analysis described

in Chapter II Section B. The joint use of comments with performance data arises when

apparently one time comments are found to support or explain results of task accuracy

statistics.

F. DEVELOPMENT OF RECOMMENDATIONS

To determine required enhancements, the data analysis results are compared with

test objectives and expected test outcomes. Each of the categories of test results outlined

in previous chapters is considered jointly with respect to its impact on the test objectives.

Implied enhancements resulting from task accuracy statistics, question response statistics,

and participant comments are listed together in common categories. These categories are

then screened for conflicts and considered with respect to impact on learnability and

reuse.

 45

The resulting enhancements are categorized as design or documentation

enhancements. Design enhancements are those requiring changes to the API source code

or in the actual structure of its underlying model. Documentation enhancements are those

requiring changes to existing documentation and addition of new documentation. It is

expected that documentation enhancements will out number the design changes. This is

due to the lack of reference material for the API and hastily written source code

comments. However, it is also expected that a portion of the API involving the

ChannelManagerAuthority interface will require redesign.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

IV. ANALYSIS OF CHANNEL API: BASIC COMPONENTS AND
COMPONENT ASSEMBLY

This chapter presents the application of the analysis method outlined in Chapter

III to the Channel API with emphasis given to testing its basic functionality.

A. TEST PLAN

This test plan was developed as described in Section B of Chapter III.

1. Test Purpose

The purpose of this test is to evaluate the Channel API to discover any portions of

its basic functionality which may make the API hard to learn, use, or understand. The

basic functionality is its underlying model, component assembly mechanism, and its use

of event-driven data flow. Specifically, the API’s class names, interface names, method

names, and signatures are to be evaluated, where the signature is the return types and

parameters of the method. In addition, the underlying Channel Model of the API is to be

evaluated for learnability and perception. The test will also look to see if the API’s

abstraction of event based programming causes any confusion for those not familiar with

event based programming.

2. Test Objectives

The following questions identify attributes of the Channel API which are to be

measured. The answers to these questions will determine how usable the API is and how

well it supports learnability and reuse.

• Are method names self descriptive? Can programmers ascertain their use
by the names alone?

• Do method signatures convey proper use of methods?

 48

• Do method signatures convey the method’s purpose in the overall Channel
Model?

• Do class names convey the object’s purpose/role in the overall Channel
Model?

• Are method names easy to remember?

• Are method purposes easy to remember?

• Are class purposes easy to remember?

• Is addition of a talker interface required to solidify the talker role in the
Channel Model?

• For which aspects of methods and classes are documentation and use
examples necessary?

• Is there a linear process to be followed when using the API to implement
the Channel Model?

• Does API’s abstraction of event-driven programming cause any
confusion?

• Can users ignore event-driven programming?

• Does use of the term ‘event’ in method signatures cause confusion? Does
it hinder learnability of the Channel Model? Does it cause errors in
methods used?

• Does the ChannelEvent class cause any confusion?

3. Subject Profile

The following table describes the characteristics of participants in this test. The

questionnaire used to screen is included in the appendices. To summarize, intermediate

Java programmers were chosen in order to ensure that basic ideas such as classes and

interfaces are already known as well as comprehension of how to use a Java API. The

test subject profiles are contained in the table below.

 Subject 1 Subject 2 Subject 3 Subject 4

Programming Experience

(Years: Y)

2 < Y < 5 1 < Y < 2 5 < Y 2 < Y < 5

 49

Course in Object Oriented

Programming (Yes/No)

Yes Yes Yes Yes

Experience Using API (Yes/No) Yes Yes Yes Yes

Learning Style

(Docs First, Try First, By Doing)

Docs

First

Try

First

By

Doing

Try

First

Documentation Style Preference

(Online, Textual, None)

Textual None Online None

Java Programming Experience

(# of Projects Completed: P)

5 < P 1 < P < 4 5 < P 5 < P

Table 9. Test Subject Characteristics

4. Test Method

Four subjects were tested for this study. Each test took approximately fifty

minutes. Subjects were given a questionnaire to determine if they met the user profile

characteristics. Subjects who met the user profile were assigned a subject ID and all test

forms were annotated with this. This facilitated protection of subjects’ personal

information (name and email address only).

API documentation was provided in the form of online HTML files generated by

the Javadoc utility using the original source files as input. This documentation was

installed by the test administrator prior to start of the test; these were bare minimum

descriptions required for use; they only contained class/interface names and method

signatures. The project write up (discussed below) included a brief introduction of the

Channel API and the Channel Model.

A brief program project write up was given, followed by a series of tasks to

accomplish the project. The subject was asked to describe the steps he/she would take to

complete the tasks by referring to the Javadocs. Subjects’ responses were video taped.

 50

After completing the task series, some questions pertaining to the Channel API

and documentation were asked to test memorability and comprehension of the API and

Channel Model. Next, the subjects were polled for any subjective input to the use of the

API using a series of scripted questions. Finally, subjects were debriefed, which included

review of any problem areas noted during the session, review of comments made during

the session, and review of the responses to subjective questions.

5. Task List

The following is a list of tasks for this test. For each task, there is a description of

the goals, Test Criteria, and the hypotheses of the task outcome. The goals indicate what

the task is measuring; the Test Criteria describe the indications for task completion; and,

the hypotheses indicate the expected outcome to be proven or disproven.

During the actual test, the tasks are presented to the subjects in the form of a

programming project write-up. Each task is further broken down into sub-tasks that

direct the subjects toward investigating the specific functionality represented in the task.

The project write-up is included in appendix A under the title Project Write-Up.

1. Design a class that is to be a channel talker.

Goals of Task:

• Determine if a talker interface is required.

• Determine if the subject realizes that definition of a data/message class is
required and that any such class can be passed to the channel as the object
event argument.

• Determine if subject understands the talker’s interaction with the channel
object.

Test Criteria:

• Subject has realized that there is no talker class or interface provided in
the API and that any object can be a talker.

 51

• Subject has discovered the talk methods in the Channel class and realizes
that these methods are the talker’s interface to the channel object.

• Subject has discovered the need for implementation of a data/message
object.

• Subject presents a constructor for the talker class that requires a reference
to a channel object.

Hypotheses:

• Subjects will be confused by the absence of a channel talker interface.
This can be overcome with examples and sufficient documentation that
explain and illustrate the ability of any class to fulfill the role of talker.

• Subjects will be confused as to how a talker object is able to talk on a
channel. This can be overcome by giving an example in which a talker
class contains a reference to a channel object passed into the talker class
constructor.

• Addition of a ChannelTalker interface to the API will remove some of the
confusion, but is not required.

2. Design a class that implements the ChannelListener interface.

Goals of Task:

• Determine if the purpose and use of the listener interface is understood by
the subject.

• Determine if the ChannelEvent class causes any confusion.

• Determine if listener object’s reference to the channel object is
understood.

Test Criteria:

• Subject has found the ChannelListener interface.

• Subject has found the receive method in the listener interface.

• Subject is not confused by the ChannelEvent class argument in the receive
method.

 52

• Subject presents a listener constructor that requires a reference to a
channel object.

Hypotheses:

• Subject will be confused by how a ChannelListener gains access to the
channel object; an example showing a channel reference data member will
fix this.

• The ChannelListener’s receive method argument ‘ChannelEvent’ will
confuse subjects. An example of the ChannelEvent’s purpose is required
to show how it encapsulates the delivered object.

3. Design a class that uses a channel object to assemble the classes developed in task
1 and 2.

Goals of Task:

• Determine if the basic structure and functionality of the Channel Model is
understood.

• Revisit the Channel.talk methods if they were missed during task 1.

• Determine if the flow of event objects from talker to channel to listener is
understood.

Test Criteria:

• Subject finds/discusses the use of the the Channel.addListener and
Channel.addTalker methods.

• Subject finds/discusses the Channel.talk methods.

• Subject finds/discusses the ChannelListener receive method.

• Subject discusses the ChannelEvent Class and its relation to the
ChannelListener.

Hypotheses:

• Subjects will be confused by the talker-channel and channel-listener
interactions. An example of the talker-channel and channel-listener
interaction is required in the documentation.

 53

• Subjects will be confused by the ChannelEvent object delivered to the
ChannelListener. An example of the ChannelListener unpacking the
ChannelEvent is required.

4. Complete a list of multiple choice and fill-in-the-blank questions.

Goals of Task:

• Test memorability of method and class names.

• Test learnability of the Channel Model.

• Test memorability of method signatures.

• Test memorability of class roles.

6. Test Environment and Equipment

The test is delivered to subjects in a quiet library space. The API documentation

is pre-installed on a laptop computer and is open before the test begins. The entire

session, after preliminary paper work, is video recorded.

7. Test Monitor Role

The test monitor makes written recordings of notable comments that pertain to the

specific Test Criteria for each task, as well as any unexpected useful comments. In

addition, the test monitor acts as an online expert for questions that the subjects can not

find answers to in the documentation. Once the examiner notices that all Test Criteria are

met and/or a fair amount of time has passed for the task, the subject will be prompted to

move on to the next task.

8. Evaluation Measures

The measurable test attributes are the completion of Test Criteria, End-of-Test

Question Responses, and subject comments. These are evaluated using the techniques

outlined in Section F of Chapter III.

 54

The attributes of the API measured are comprehension, perception, readability,

learnability, and memorability. These are measured using the subjects’ responses and

interactions with the API Javadocs. The Javadocs are currently the only representation of

the interface; thus, one expected output is to note where further use examples and

documentation are needed.

B. TEST RESULTS

The results from the tests were in the form of video tapes for each subject, the

task list used by subjects containing possible responses, and the tables used by the

examiner to record important Test Criteria and responses. Completion time for each of

the four tests ranged from 45 minutes to 90 minutes. Review of each taped session side

by side with the mentioned paper collections, required an approximate of 20 minutes in

addition to the length of the tape. Compilation of the data resulting from the taped

sessions and the data collection forms took approximately three hours, with its analysis

requiring two additional hours.

Each session was reviewed in turn. The recorded responses were again checked

against the Test Criteria for each task. Additionally, attention was given to any

comments made by subjects to explain their confusion with, comprehension of, or

perception of the currently tested API features. For example, any analogies used by the

subjects to explain their perceptions of the underlying Channel Model were recorded as

well as analogies used to explain the roles and functionality of the various model objects.

For each of the three tasks contained in the tests, subjects’ responses were

evaluated for:

• Input to Task Goals

• Meeting of Test Criteria

• Proof or Disproof of Task Hypotheses

• Unexpected Input

 55

Additionally, the end-of-test questions were used to measure:

• Memorability of Class and Method Names

• Memorability of Method Signatures

• Memorability of Object Interactions

• Memorability of Object Assembly

The results of these two groups were used to determine implications for

comprehension, learnability, and perception of the Channel Model, the Event Flow

Model, and the API’s Component Assembly Mechanism. Additionally, documentation

points required to support rapid learning and comprehension of the API were determined.

The following sub-sections contain discussions of the test results pertaining to task

completion, end-of-test questions, and subjective comments in that order.

1. Summary of Task Completion

This section summarizes the data collected from subjects’ completion each of the

three tasks. The summary includes a listing of all sub-tasks, a table showing participants’

meeting of Test Criteria, and implications of these results.

a. Task 1: Implementation of a Talker

This task prompts subjects to design a SensorInput class to perform the

role of talker in the Channel Model. It is broken into four sub-tasks that focus subjects on

specific test criteria.

1.1: Determine how the SensorInput class fulfills the role of Talker.

Test Criteria:

1. Subject comments on absence of a talker interface or class.

2. Subject realizes that any java.lang.Object can be a talker.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes No

 56

Criteria 2 No Yes Yes No

Analysis:

The desire for this sub-task was to determine if subjects were confused by

the absence of a talker interface and if they could determine that any generic Java Object

could perform the role of talker. Three of the four subjects noticed immediately that the

API did not provide any interface for the talker to implement and spent much time

looking for an explanation in the documentation. The other subject looked through the

documentation looking for a way to create a talker using a method within a given class.

Implications:

Since all the subjects either expected a talker interface to be provided or

looked for an API mechanism to create a talker, quickly visible documentation must be

provided to explain why no interface is provided and that contains an example of how

any generic object can fulfill the role of talker. This will eliminate the initial confusion

and will reduce the time required to produce a listener components.

1.2: Determine if any of the API classes or interfaces need extension or

 implementation for this task.

Test Criteria:

1. Subject expresses need or desire for a talker interface.

2. Subject determines that no API feature needs extension or

 implementation.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes No No

Criteria 2 Yes Yes Yes Yes

 57

Analysis:

The aim of this sub-task was to determine if there would be any benefits to

providing a Talker interface and to determine if subjects could get past the absence by

stating that no API feature was available. Half of the subjects wanted a talker interface to

be provided, while the other half decided that it was not necessary. All of them were able

to get past the confusion and conclude that no API mechanism was available for creating

talkers.

Implications:

No interface is required. Providing documentation explaining how to

define a talker will suffice.

1.3: Determine how the SensorInput object will supply data to the

 Channel.

Test Criteria:

1. Subject finds talk methods located in the Channel class.

2. Subject is confused by the java.lang.Object event argument in talk

 methods.

3. Subject comments on the need to define an event object.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes No Yes

Criteria 2 No No No No

Criteria 3 Yes No No Yes

Analysis:

There were two goals for this sub-task. The first was to determine if

subjects could figure out how the user-defined talkers would interact with the API

defined channels. The second was to determine if subjects could understand how

 58

Talker’s produced and pushed events to the channel and if the use of the word ‘event’ to

describe the data pushed to the channel caused any confusion.

Three of the four subjects successfully found the talk methods in the

Channel class for delivering events. The fourth was confused with how the events

flowed through the model. None of the subjects were confused with the abstraction of

events to deliver data to the Channel. Half talked about defining their own class to push

through and the other half stopped at the decision to push ChannelEvent objects through.

Implications:

The mechanisms used by talker components to produce and push events to

the channel are easily understood by examination of class and method descriptions;

however, a short example will make it clear to all users.

1.4: What might a constructor for this class look like?

Test Criteria:

1. Subject describes a need for a Channel object reference.

2. Subject determines no constructor is necessary.

3. Subject’s constructor contains a Channel object reference.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes No No Yes

Criteria 2 No No No No

Criteria 3 Yes No No Yes

Analysis:

The goal of this sub-task was to determine if subjects could explain the

precise relationship between instances of a talker and a channel that would be required

for them to interact. The two possible arrangements are for both objects to exist within

and be controlled by a larger class or, for the talker to contain a data member that

 59

references the channel it talks on. This is an advanced task that required subjects to give

careful thought to how they would design the talker component and the main application

it would be used in. The first arrangement was chosen by half of the subjects. The

second was chosen by one with the last subject failing to immediately understand how the

talkers and channels would become associated within an application.

Implications:

Although three of the four subjects were able to come to a design decision

that would support the talker’s association with the channel, the one failure was due to

insufficient documentation of the talker-channel relationship. So, an explanation of the

two possible arrangements and short examples are necessary.

b. Task 2: Implementation of a Listener

This task prompts subjects to design an InputProcessor class as a listener.

Its purpose was to determine if subjects could find the API interface and methods

necessary for a class to fulfill the role of listener, which includes receiving events from

the channel and processing these events.

2.1: Determine how the InputProcessor class fulfills the role of Listener.

Test Criteria:

1. Subject finds ChannelListener interface.

2. Subject finds the receiveEvent(ChannelEvent) method.

3. Subject is confused by the ChannelEvent argument.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes Yes

Criteria 2 Yes Yes Yes Yes

Criteria 3 No No No No

 60

Analysis:

The purpose of this sub-task was to determine if subjects could determine

the API mechanisms used for defining a listener component. This was accomplished by

observing if subjects were able to find and understand the required interface.

Additionally, it was desired to again see if the API’s use of events caused any confusion.

All of the subjects completed this sub-task successfully.

Implications:

The interface and method name are self-descriptive and allow

programmers to quickly learn the listener role in the Channel Model.

2.2: Determine how an InputProcessor will interact with the Channel.

Test Criteria:

1. Subject identifies that the channel calls a listener’s receive method.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes No No

Analysis:

The purpose for this sub-task was to determine if there was any confusion

in the interaction between the channel and listener. Specifically, it was desired to see if

the event-driven delivery mechanism caused any confusion.

Two of the subjects were not able to understand the interaction. They both

knew that the events were supposed to be delivered to the listener by the channel, but

were confused by how the events were delivered. From their comments, both were

confused due to the Channel class’ implementation of the ChannelListener interface.

This implementation requires that the Channel define a receiveEvent method. After the

examiner explained that this was an advanced feature that allowed a channel to be a

listener on another channel, they were both able to overcome the confusion.

 61

Implications:

An example and documentation is needed to explain the precise

relationship of the two objects. Additionally, any hidden features such as the stacking of

channels must be documented to eliminate confusing first time users. For this specific

feature, an explanation in the Channel class comment should suffice.

2.3: Determine how the InputProcessor is related to the Channel.

Describe a constructor for this class.

Test Criteria:

1. Subject determines need for a Channel reference data member.

2. Subject provides a constructor with a Channel argument.

3. Subject determines that no constructor is necessary.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 No No No Yes

Criteria 2 No No No Yes

Criteria 3 No No No No

Analysis:

The purpose for this sub-task was to investigate the ability of subjects to

comprehend the precise relationship required for channels and listeners to interact in the

larger application. There are two possible arrangements. The first is for the main

application to contain both objects and to mediate the association; and, the second is to

place a Channel data member in the listener, which may be passed into its constructor.

This was measured by the subjects’ descriptions of the relationship necessary for the two

objects to interact and their description of a listener constructor.

Three of the four subjects felt that the listener did not need direct access to

the channel it listened on since it was the channel that initiated the event delivery. The

 62

fourth subject was again confused by the Channel class’ implementation of the

ChannelListener interface and became hung up trying to have the listener call the

channel’s receiveEvent method.

Implications:

The preferred method for providing the required relationship between the

two objects is for the main program to provide the association since the channel initiates

event delivery. An example demonstrating this will aide in efficient learning of the API.

Additionally, it must be made immediately known that the listener is associated with a

channel through a well known ID schema devised by the application designer. The

importance of this ID is not well explained in the existing comments.

2.4: How will a listener respond to data passed by the channel?

Test Criteria:

1. Subject finds the ChannelEvent argument in the receive method.

2. Subject investigates the ChannelEvent class.

3. Subject finds the getEvent() method in ChannelEvent class.

4. Subject is confused by ChannelEvent argument.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes Yes

Criteria 2 No No Yes No

Criteria 3 No No Yes No

Criteria 4 No No No No

Analysis:

The purpose of this sub-task was to determine if subjects could understand

the listener’s responsibility to process the received events and that it was up to the

programmer to define this processing. This also determined subjects’ comprehension of

 63

the listener acting as the last stop in the event data flow model. These were measured by

observing if the subjects found the ChannelEvent argument in the ChannelaListener’s

receiveEvent method and if they were able to unpack this argument for processing.

Although none of the subjects were confused by the listener receiving a

ChannelEvent argument, only one of the four discussed how to unpack this argument to

extract the encapsulated event.

Implications:

Strong conclusions are not possible since the other three did not examine

the ChannelEvent class functionality. However, since they all fit the same user profile

with similar programming experience it conceivable that they would have understood

how to extract the event encapsulated by the ChannelEvent. Thus, this requirement must

be mentioned in the ChannelEvent and ChannelListener as well as in the API overview.

c. Task 3: Component Assembly Using a Channel

This task prompted subjects to design a TrackingApp class that uses a

Channel to assemble the two classes they designed in the Task 1 and 2. The intent was to

determine if subjects could find the API methods used to assemble components.

3.1: Describe how you would create a Channel object.

Test Criteria:

1. Subject finds Channel constructors.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 No Yes Yes Yes

Analysis:

This sub-task was designed to ensure that subjects understood that the

channel is a stand-alone object that is already provided by the API. It is straight forward

and only requires that subjects identify the constructor(s) used to instantiate a Channel.

 64

By this point in the test, subjects had already looked through the Channel class

documentation several times so it was predicted that this task would have 100% success;

however, one of the subjects had found the ChannelManager class which led him to

believe that he would not need to create Channel objects himself.

Implications:

The Channel is understood to be a stand-alone object which users may

instantiate themselves. However, an example of its use and an explanation of the

ChannelManager class would remove any confusion.

3.2: Determine how to associate an InputProcessor with the Channel.

Test Criteria:

1. Subject recalls that the InputProcessor is a ChannelListenr.

2. Subject finds the Channel.addListener methods.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes Yes

Criteria 2 Yes Yes Yes Yes

Analysis:

This sub-task was designed to ensure that the subjects understood the role

of the listener class they defined and how to associate it with a Channel. It was

successfully completed by all subjects.

3.3: Determine how to associate an instance of the SensorInput class with

the Channel.

Test Criteria:

1. Subject recalls that the SensorInput is a talker.

2. Subject finds Channel.addTalker methods.

 65

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes Yes

Criteria 2 Yes Yes Yes Yes

Analysis:

This sub-task was designed for the same purpose as the previous one but

with the implemented talker as the focus. It too was successfully completed by all

subjects.

3.4: Determine in which class this association would be initiated.

Test Criteria:

1. Subject mentions a Channel data member in the talker.

2. Subject chooses main application where Channel resides.

3. Subject chooses talker class.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 No No No No

Criteria 2 Yes Yes Yes Yes

Criteria 3 No No No No

Analysis:

This sub-task was designed to evaluate the subjects’ perceptions of where

the Channel Model fits into the overall application design. This is determined by

observing in which class they give control over registering their talkers and listeners.

There were two possibilities. They could have the talkers and listeners use a data

member which referenced a Channel or they could have the main application or class

control the association.

 66

By this point in the test session, they had all given more thought to the

overall Channel Model and demonstrated this in their comments. Thus, they all chose to

give control to the main class for adding talkers and listeners to the channel. This

reaffirms the results from sub-task 2.3 in which all subjects placed control of interaction

in the main class.

3.5: Determine how a SensorInput object will deliver data to a Channel.

Test Criteria:

1. Subject finds Channel.talk methods.

2. Subject is confused by java.lang.Object event arguments.

3. Subject is confused by the talk methods existing in the Channel class.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes Yes

Criteria 2 No No No No

Criteria 3 No No Yes No

Analysis:

This sub-task was designed to determine if subjects experienced any

confusion with the talker’s event pushing functionality provided by the Channel class. In

addition, it was to again look for confusion caused by the use of events. This was

measured by observing subjects’ descriptions of how to have the talker push an event to

the Channel. The Channel.talk methods were found by all the subjects with no confusion

caused by the event arguments.

3.6: Assume that a SensorInput has received a piece of input data.

Describe the sequence of method calls that occur to get the data from

the SensorInput to the InputProcessor.

 67

Test Criteria:

1. Channel.talk method noted.

2. InputProcessor.receiveEvent method noted.

 Subject 1 Subject 2 Subject 3 Subject 4

Criteria 1 Yes Yes Yes Yes

Criteria 2 Yes Yes Yes Yes

Analysis:

This sub-task tests the event flow model used by the API. The methods

used as Test Criteria are the essential calls needed for the various components to pass the

events through the model. Each of the methods have already been seen and tested, but

this sub-task puts them all together in relation to the assembled components. As

expected, all subjects were able to successfully complete this task.

 2. Summary of End-of-Test Questions

This section summarizes the data collected using the end-of-test questions, which

participants were asked to complete without reference to the API documentation. Each

question is listed with its correct response high-lighted. Statistics for participant

responses and implications for the results are then discussed.

a. Listing of Questions
1. Which of the following methods is used for a Talker to send data to a Channel?

a. ChannelTalker.talk(java.lang.Object talker, java.lang.Object event)

 b. Channel.talk(java.lang.Object talker, java.lang.Object event)
c. ChannelListener.receive(java.lang.Object talker, java.lang.Object event)
d. none of the above, programmer must write own method

2. Which interface or class does a Talker class implement or extend to participate

 in the Channel Model?

 68

a. ChannelTalker interface
b. java.lang.Object

 c. ChannelItem class
d. none

 3. Provide the name of the interface that must be implemented by a class that is to

 receive data from a Channel object. What method must this class implement?

- ChannelListener, receiveEvent(ChannelEvent event)

4. When a listener receives data from a Channel, which object initiates the

 interaction?

a. the Channel object
b. the Listener object

 c. the ChannelEvent object
d. it is a system response to a Talker thread

5. What is the name of an object that is delivered to a Listener object by the

 Channel?

a. ChannelData
b. ChannelEvent

 c. java.lang.Object
d. Programmer must specify in Listener’s receive method implementation

6. What class is the central object in the Channel Model?

- Channel class

 7. What kind of object is delivered to the Channel by a Talker?

a. ChannelEvent
b. ChannelData

 c. any java.lang.Object
d. none delivered
e. Both a and c

8. How does a Talker or Listener object register with a Channel object? (Circle all

 that apply)

a. Channel.addTalker(java.lang.Object)
b. Channel.addTalker(ChannelTalker)

 c. Channel.addListener(java.lang.Object)

 69

d. Channel.addListener(ChannelListener)

9. How does a Talker or Listener gain access to a Channel object for method

calls?

a. Main program controls the access
b. A reference to the Channel in each class

 c. Both a and b
d. No access possible
e. Do not remember

10. Can you briefly describe the structure of the Channel Model using words or a

class diagram?

b. Participant Response Statistics

The table below shows the responses given by the four participants along

side the correct responses. Below the table is a discussion of what each question was

designed to measure and the implications participant responses have on the API design.

Q Subject 1 Subject 2 Subject 3 Subject 4 Key

1 b b b b b

2 d b d b d

3 ChannelListener ChannelListener

receiveEvent

ChannelListener

receiveEvent

(ChannelEvent)

ChannelListener

receiveObject

ChannelListener

receiveEvent

(ChannelEvent)

4 a a a a a

5 b b b b b

6 Channel Channel Channel Channel Channel

7 a e e e e

8 a, b, c, d a, d a, d b, d a, d

 70

9 a c c b c

Table 10. Subject Responses to End-of-Test Questions

Question 1:

Purpose:

• Measure memorability of API method names by requiring recollection of
the Channel.talk method.

• Measure learnability of the talker-channel interaction by requiring subjects
to recall that reference to a channel is required to deliver it an event.

Participant Response Statistics

• 100% method name memorability

• 100% talker-channel interaction learnability

Implications

Based on the percentage of subjects who responded correctly, it is

conclusive that the API’s use of self-descriptive names is affective and that the talker-

channel interaction is easy to learn.

Question 2:

Purpose:

• Measure memorability API fulfillment of the talker role by requiring
subjects to recall that no API class or interface is provided for talker
implementation.

Participant Response Statistics:

• 50% memorability

 71

Implications:

Two of the four subjects correctly identified that no API feature was

available. After reviewing the session tapes for the other two subjects, it was determined

that their incorrect responses were due to the fact that a talker could be any generic Java

Object, which was one of the response choices. Their choice of this other response

indicates their comprehension of implementing the talker role; so, the question does not

need to be thrown out and, it is concluded that the programmer’s flexibility in

implementing a talker component without the aide of an API class or interface is easily

remembered.

Question 3:

Purpose:

• Measure memorability of API class names using the ChannelListener
interface as a sampling.

• Measure memorability of API method names using the receiveEvent
method as a sampling.

• Measure learnability of the ChannelListener role through recollection of
its required receive-method.

• Measure memorability of API method signatures using the receiveEvent
method signature as a sampling.

Participant Response Statistics

• 100% recall of interface name

• 50% recall of required method name

• 75% recall of listener role

• 25% recall of method signature

Implications

The results for memorability of names further confirm the success of the

API designer’s attempt to provide self-descriptive names that convey the purpose of the

objects and methods. The high percentage of subjects that recalled the need for the

 72

ChannelListener to provide a receive method confirms that the role of the listener in the

Channel Model and the API feature used to fulfill the role are both easy to remember and

easy to learn. The low percentage of recollection of the receive method signature is

likely due to the short amount of time spent with the API. To aide rapid learning of

method signatures, class diagrams and use examples are needed.

Question 4:

Purpose:

• Measure memorability of the channel-listener interaction by requiring
recollection of the channel’s initiation of the interaction.

• Measure learnability of the channel-listener portion of the event flow
model used in the API.

Participant Response Statistics:

• 100% memorability

• 100% learnability

Implications:

These results indicate that the Channel’s initiation of event delivery to the

listener is easy to remember and can be quickly learned by intermediate programmers in a

short period of time.

Question 5:

Purpose:

• Measure memorability of API class names by requiring recollection of the
ChannelEvent class.

Participant Response Statistics:

• 100% memorability

Implications:

 73

This result indicates that the ChannelEvent class name, as a sample of API

class names, is easy to remember and describes its purpose.

Question 6:

Purpose:

• Measure memorability of the Channel class’ role as central object in the
Channel Model.

Participant Response Statistics:

• 100% memorability

Implications:

The result of this question indicates that the Channel is understood to be

the central object in the model. The question seems like a no-brainer; however, as will be

discussed in the sub-section on subjective feedback, some of the subjects had difficulty

with the Channel being a stand-alone object due to the existence of the ChannelManager

class.

Question 7:

Purpose:

• Measure memorability of the two ways for a talker to push events to the
Channel by requiring recollection of both delivery of a ChannelEvent and
a generic Java Object.

• Measure learnability of the API contract provided for a talker to push
events to a Channel through demonstrated recollection of one or both of
the deliverable objects.

Participant Response Statistics:

• 75% memorability

• 100% learnability

Implications:

Three out of four subjects were able to recall both of the ways possible for

an event to be pushed to a Channel. The one subject who did not choose both, chose a

 74

response that indicated the ChannelEvent class. These results indicate that the API

feature provided for a talker to push events is easy to learn and remember in a short

period of time.

Question 8:

Purpose:

• Measure memorability of the type of object associated with a channel as a
talker through recollection of the proper Channel.talk method signature.

• Measure memorability of the type of object associated with the channel as
a listener through recollection of the proper Channel.talk method
signature.

• Measure memorability of the absence of a talker interface through non-
choice of ChannelTalker as a method argument.

Participant Response Statistics:

• 50% memorability of talker type

• 75% memorability of listener type

• 50% memorability of talker interface absence

Implications:

One of the subjects chose all of the choices making his input unusable;

however, he annotated the form to indicate that the ChannelTalker argument would be a

Java Object by default. His annotation indicates that the first and third statistics may be

25% higher, but this is an assumption. Ignoring the unusable results still leaves strong

implications that the subjects were able to remember the types of objects associated with

the Channel and that no interface is provided. Documentation and an example of the

three components and their interaction contracts will clear up any potential confusion.

Question 9:

Purpose:

• Determine the preferred method of controlling Channel access in an
application through choice of where to place control.

• Measure perception of where Channel access is controlled in the overall
application.

 75

Participant Response Statistics:

• 25% put control in the main class/program

• 25% put control in the talker or listener class using a channel reference

• 50% felt either method was appropriate

• 25% perceived control of channel access in the main program

• 25% perceived control of channel access via a channel reference data
member

• 50% perceived both ways possible

Implications:

Though the results for both of the measured areas are identical, they

represent two different aspects of the API use. The first is an attempt to determine which

of the two choices is preferred and the second is an attempt to determine if subjects

realize that the two choices exist. In the first case, the results give no indication of a

preferred method due to 50% of the subjects not making a solid choice. In the second

case, the 50% indicates that the existence of two methods is not obvious. Thus, it is

concluded that if either of the methods was intended over the other during API design,

then this should be reflected in the documentation; and, if neither was intended over the

other, then they should both be given equal coverage in the documentation.

Question 10:

Purpose:

Question 10 did not ask for a multiple choice response. Instead, it asked

subjects to provide a description of the structure of the Channel Model using either words

or a class diagram. The intent was to determine if subjects could, by the end of the 30 to

75 minute session, accurately describe the basic components of the model and their

relationships.

 76

Results and Implications:

Three of the four subjects were able to draw an accurate class diagram

with the Channel class as an intermediary for the talker and listener components. The

other subject indicated confusion with the Channel class’ implementation of the

ChannelListener interface and provided nothing more than this class-interface

relationship in his diagram. His response may be due to the wording of the question.

This is a reasonable assumption since his diagram was of the Channel and the interface

he found it to implement. Overall, the strong 75% correct response rate indicates that the

Channel Model structure is learnable in a short period of time.

3. Summary of Subjective Comments

Subjective comments were collected during task completion and during subject

debriefing. In addition, comments were transcribed during review of the recorded

sessions. Comments were categorized according to their relation to basic Channel Model

components and component assembly, the event data flow model, programmer

perception, or unexpected areas that were not the focus of this test session. The

following sub-sections discuss these categories in the order listed.

a. Comments Pertinent to Channel Model and Component
Assembly

All three of the tasks in the test were designed to illicit comments

regarding the Channel Model components and their assembly. The first task investigated

the role of the talker component in the Channel Model, the second task investigated the

listener role, and the third task explored how they are assembled using a Channel. The

focus in this area was to determine if first time users of the API could easily comprehend

the basic components of the Channel Model, if the model was easily learned based on

names and functionality, and if first time users could quickly comprehend how the API

could be used to assemble components.

Overall, the subjects were able to comprehend the roles and

responsibilities of the three basic Channel Model objects. However, their comments

 77

during to the task completion exposed the following areas which hindered comprehension

and learnability of the model and its basic components.

• Missing Talker Interface

Initially, two of the four subjects explicitly asked about a missing ChannelTalker
Interface. The other two searched through the various class documentations
looking for a way to create a ChannelTalker object. They commented that the
documents provided a Channel class and a ChannelListener interface, but
provided no indication of why there was no ChannelTalker interface available.

• Initial Model Overview

During task completion, subjects asked for the documentation to immediately
provide a general overview of the Channel Model to include all the objects, their
roles, and how they interact. They described this overview in various ways,
which probably reflects their various learning styles. One subject wanted a
diagram or pictures showing the objects and their interactions. Another wanted
one short example that displayed instantiation of each of the objects and the
method calls made during their interaction. Another wanted simple explanations
on a front page of each object with its role in the model and how to use it. One of
the subjects expressed in the debriefing session that complete understanding was
not possible without extensive use.

• Channel ID Assignment

Three out of the four subjects did not understand where the Channel ID came
from. They asked how the Channel created the ID and how the Channel would
notify them of the ID assigned. It is clear from their comments that this important
API functionality is not self-evident and must be well documented and noticeable
upon first exposure to the API.

The ideas of Component Assembly and Interaction were generally

understood by all of the subjects. However, they all fumbled with the specific details of

using the API to assemble their components and to provide the desired interactions.

Particularly, they presented varied descriptions of where in their programs they would

create Channel objects and perform the registering of talkers and listeners. Subjects

commented on the following areas during the test sessions.

• Channel Creation

Lack of examples in the documentation caused confusion as to which class would
create and control the Channel objects. Some of the subjects wanted to create
channels in a main class that would keep track of them all but would not control

 78

the talker and listener interactions with the channels. The two basic ideas were to
have the main class create the channels or to have a talker create the channel.

• Component Assembly Point

All of the subjects commented on confusion about where in the application the
talker and listener components would be assembled. As in the channel creation
above, they wanted to either have a main class create a channel and then add the
talker or listener components to the channel or to pass a reference to the talker and
listener components and have them add themselves.

• Loose Association Between Talkers and Listeners

At least one of the subjects expressed confusion about how talkers and listeners
were associated. He stated that it was difficult to understand how a talker could
push an event bound for a listener without knowing that the listener is ready to
receive the event, will accept that type of event, or is even present.

b. Comments Pertinent to Event Flow Model

An important part of the API is its use of the Event-Driven data flow

model. All three of the tasks exposed the subjects to this aspect and asked them to

consider method calls and component relations involved. Below is a list that discusses

subject comments that indicate confusion with Event-Driven data flow.

• Agreement on Event Type

Most of the subjects were comfortable with the talker component pushing any
type of object to a channel and having it decide which Listeners to deliver the
object to. However, one subject commented on the need for the talkers and
listeners to agree on which type of event objects to push and receive. He viewed
the two components as a single unit once associated with a channel and felt they
needed to agree on the event type.

• Channel Class Event Flow Method Names

On one side of the Event Flow Model, is the lalker that pushes events to a
Channel using a talk method. On the other side is a listener that receives events
via a call to its receiveEvent method. One of the subjects expressed strong dislike
for this pair of method names. He felt that the names did not match and wanted
the talk method name to be changed to match the receiveEvent method name. He
suggested the name be changed to addEvent on the talker side of the Channel.

 79

• Channel Class Add Method Names

One of the subjects liked that the API used the word event to define the object
passed through from talker to channel to listener. He said that the word event
helped him to understand how the data was passed through the model, especially
its one-way aspect. However, he did not feel that the add methods contained in
the Channel class clearly defined the roles of the talkers and listeners as event
producers and receivers. He suggested changing the add method names to
addEventTalker and addEventListener.

c. Comments Indicating Programmer Perception

The following comments and analogies describe the programmers’

perceptions of the Channel Model, the API purpose, and the API usefulness. These are

helpful in determining what analogies are useful in documentation and for determining

what types of projects programmers will perceive the API is designed for.

• Channel as a Stream

One of the subjects compared the Channel to a C-style Stream object with the
talker dumping objects into it and the listener taking them off the other end.

• Channel as a Buffer

One of the subjects described the channel as buffer with the talker filling it and
the listener emptying it out.

• Channel as a Socket

One of the subjects compared the channel to a Java Socket and compared the
event flow model to the Client-Server model with the talker acting as the server
and the listener acting as the client.

• Channel as a Translator

One of the subjects thought that the name channel implied that it would provide
some kind of translation service between objects passed between talkers and
listeners. He speculated on how the channel might translate the objects into a
format acceptable to the listener.

 80

• Comparison to Pipes

One of the subjects described the channel as a pipe between the talker and
listener. He also used the pipe analogy to overcome his confusion caused by the
Channel class’ implementation of the ChannelListener interface. He mentioned
that it was similar to Unix-style pipes between processes.

• Duplex Communication

One of the subjects felt that the channel name implied duplex communication.
However, he later expressed that the event abstraction led to a simplex or one way
flow of data.

• Flexibility and Usefulness

Overall, subjects commented in their debriefing sessions that the API
functionality would be useful and that it was a powerful tool.

• Intended Audience

All of the subjects, as intermediate level Java programmers, felt that with
extensive use, the API functionality would become clear. One of the subjects did
not feel that the API could be used to teach novice programmers. He stated that
the documentation should reflect the intended audience and that for a general
purpose API, documentation that taught basic programming ideas such as
interfaces and Object Oriented Programming would hinder more advanced
programmers.

d. Comments on Untested Features

Some of the comments made by the subjects did not pertain to any of the

tested features but had notable implications for API use or design. Listed below is a

summary of these comments and their implications.

• Channel’s Implementation of the ChannelListener Interface

Three of the four subjects were confused by the Channel class’ implementation of
the ChannelListener interface. For two of them, it caused confusion determining
how the channel and listener interacted since both have a receiveEvent method.
The examiner had to explain the purpose to eliminate the confusion. After this
explanation, one of the subjects stated that this aspect confused the
communication model.

 81

• Redundancy of Channel and ChannelManager Classes

Two of the subjects made comments about the redundancy of the methods
contained in the ChannelManager and Channel classes. They were confused
about the purpose for the redundancy, which caused one of them to believe that
the Channel could not be a stand-alone object and that a ChannelManager was
required for all projects.

• Class and Method Comments

Many of the subjects expressed dislike for the class and method comments.
Comments were made about the lack of detail in the comments. Some felt that
the comments were more beneficial to the API designer than to an intended user.
They wanted the comments to provide more detail on how the class and method is
used.

C. RECOMMENDATIONS FOR API ENHANCEMENTS

The decision to make enhancements gave consideration to the task completion

results, the end-of-test question results, and the subjective comments. These were

analyzed with respect to API design and API documentation and their impact on

learnability and comprehension of the API.

 1. Design Enhancements

Only one design change was deemed necessary from the test results.

• Change talk method name

The lack of symmetry between the talk method and the receiveEvent method is of
concern because it hinders both learnability of the event-driven data flow model
and learnability of the roles of each class in the Channel Model. The
receiveEvent name describes well the action of the listener in the event delivery
model; but, the talk method, while describing the action of the talker, is part of the
Channel class and should reflect its action as a queue instead. Thus, the talk
method name should be changed to addEvent. This will also fix the
misconception of duplex data flow implied by the Channel name. The add and
receive methods imply opposite actions at each side of the channel, whereas the
previous talk method did not necessarily provide implication of this one way
flow.

 82

2. Documentation Enhancements

• Channel Model Overview

A package overview will be added to the online documentation. This page will be
the first page displayed when the documentation is activated. It will contain a
simple diagram of the Channel Model components that indicate relationships and
interactions; this diagram will embody component assembly and event-driven
data flow. It will contain a listing of components with brief descriptions of their
roles in the model and links to a short example that shows how all the components
are instantiated and used.

• Application Component Contracts

A help page will be provided that explains how the API supports component
contracts, which includes programmer control of Channel IDs, Filtering, and
implementation of event objects.

• Explanation of Hidden Features

Features such as Channel implementation of the ChannelListenr interface must be
explained to avoid incorrect speculation of their purpose.

• Class and Method Comments Improved

Provide explanation of Roles and purposes from user point of view to include
useful analogies.

• Explanation of Important Channel Model Ideas

Channel IDs, Event-Driven data flow, Component Assembly not assumed to be
known.

• Talker Page Link Added To Class Pane

A talker link will be added to the Javadoc class pane. This page will give an
overview of the talker role. This will eliminate the confusion experienced by first
time users.

 83

V. ANALYSIS OF CHANNEL API: CHANNEL MANAGEMENT
AND FILTERING

This chapter presents an analysis of the Channel API focusing on Channel

Management and Filtering mechanisms.

A. TEST PLAN

This test plan follows the same development design as that used in the previous

chapter.

1. Test Purpose

The purpose of this test is to evaluate two advanced features of the Channel API.

First, comprehension, learnability, and perception of the roles and purposes of the

ChannelManager class and ChannelManagerAuthority interface will be evaluated. In

particular, points of confusion in the stand-alone use of both of these types of objects will

be investigated as well as points of confusion that arise when the two objects are used

together. Second, the event filtering functionality of the API will be evaluated.

2. Test Objectives

The following questions identify aspects of the API which are to be evaluated.

Answers to these questions will determine where documentation is needed and where

API design contributes to confusion. The objectives are broken into four categories: the

first four relate to the ChannelManager class; the next four relate to the

ChannelManagerAuthority interface; the following three relate to interaction of those two

objects; and, the last three relate to the API’s filtering process.

ChannelManager Class Objectives

• What documentation is needed for use of ChannelManager class?

• Can programmers understand when and how to use the ChannelManager
class?

 84

• What confusion arises when the ChannelManager class is used instead of
directly manipulating Channel objects?

• What role or purpose is implied by the ChannelManager name?

ChannelManagerAuthority Interface Objectives

• What role or purpose is implied by the ChannelManagerAuthority
interface name?

• Do the method names and signatures explain the interfaces’ role and
purpose?

• Can programmers understand when and how to implement the interface?

• Do programmers understand the responsibilities of the interface?

ChannelManager and ChannelManagerAuthority Objectives

• Can programmers discern the relationship between the ChannelManager
class and the ChannelManagerAuthority interface?

• What confusion arises from this relationship? What documentation can fix
this confusion?

• Do the name similarities cause confusion?

Filtering Objectives

• Do programmers understand the how and when to use the filtering
interface?

• What confusion arises during implementation of the filter interface?

• Are the Channel Model’s filterable attributes discernable?

3. Subject Profile

The subjects follow the same profile outlined in Chapter IV. Since advanced

features are the focus of this test, the desired subjects are those from the first test. Reuse

of the same subjects removes the initial confusion experienced during first exposure to

the API. Furthermore, each of the subjects received a debriefing after the first test that

summarized the correct use and basic functionality of the Channel API. In addition, one

new subject was recruited. He was given an overview of the features covered by the first

test session and the same briefing given to the subjects of that test. This fifth subject was

 85

added for two reasons. First, some of the results in the first test were inconclusive due to

50% positives and negatives. The fifth subject breaks this tie. Second, the new subject

provides a first time exposure aspect to this second test that was present in the first.

Subject 5 had the following characteristics as outlined in Table 5 of Chapter IV

Section 3:

• Between 2 and 5 years of programming experience

• At least one course in Object Oriented Programming

• Experience using an API

• Tries new concepts before searching for documentation

• No preference for support documentation style

• More than 5 projects using Java

4. Test Method

The same basic test method as Chapter IV was followed. However, it was

expected that each of these test sessions would run longer at 90 minutes. The subjects

were again given a task list to complete a number of tasks related to a sample

programming project, which was a continuation of the previous write up.

To ensure that there was no confusion involving the basic functionality of the

API, each session began with a brief overview of the Channel Model and its use. This

involved an explanation of the API’s use in fulfilling the first project write up. This

explanation was scripted to ensure equality of information provided to each subject.

5. Task List

1. Use the ChannelManager Class for multiple channels.

Goals of Task:

• Determine if a single ChannelManager Object’s replacement of multiple
individual channel Objects is understood.

• Determine confusion that arises in this replacement.

 86

• Determine subjects’ perceptions of the role and purpose implied by the
class name.

• Determine what documentation is needed to eliminate confusion and
support quick comprehension of the Class’ use.

Test Criteria:

• Subject demonstrates understanding of a ChannelManager Object’s
replacement of multiple channel Objects.

• Subject vocalizes confusion experienced due to the replacement.

• Subject verbalizes the role and purpose of the ChannelManager Class both
implied by Class name and actual use determined by method names and
signatures.

• Subject explains some documentation points that will clarify completion
of this task.

Hypotheses

• Subjects will not understand the transition from channel Objects to a
single ChannelManager. Sufficient documentation and an example will
solve this.

• The redundancy of the ChannelManager Class methods and Channel
Class methods will cause confusion.

• The ChannelManager Class name will imply the correct role and purpose
of the class. This will aid in eliminating the initial confusion caused by
the transition.

2. Implement the ChannelManagerAuthority Interface.

Goals of Task:

• Determine the confusion that arises from the interface name.

• Determine if the method names and signatures eliminate or enhance the
confusion.

• Determine if the use and purpose of the interface is discernable.

 87

• Determine if subjects can speculate on potential responsibilities of such an
object for controlling channel Access.

• Determine documentation points to eliminate confusion.

Test Criteria:

• Subject describes the purpose and role implied by interface name.

• Subject investigates methods and comments on their implied purpose and
use.

• Subject demonstrates increased or lessened confusion after method
investigation.

• Subject verbally speculates the purpose and use of an interface
implementation.

• Subject speculates on potential responsibilities of an interface
implementation.

• Subject comments on useful documentation points.

Hypotheses

• Subjects will be confused by the interface name.

• The name will lead to false conclusion about the interface’s role and
purpose.

• Method names will not help to eliminate confusion.

• The interface purpose and use will not be correctly discernable.

• Implementation responsibilities will not be understood.

• A different name is needed to correctly reflect the intended use and
purpose.

• A different name will eliminate some of the confusion.

• Examples and documentation will eliminate some confusion but will not
completely overcome the name.

3. Use the ChannelManager (CM) Class with a ChannelManagerAuthority

(CMA) Interface implementation.

 88

Goals of Task:

• Determine if the CM’s use of the CMA is understood.

• Determine what confusion arises from the relationship.

• Determine confusion caused by the name similarities.

Test Criteria:

• Subject discusses the appearance of the CMA in the CM constructor.

• Subject discusses confusion of the appearance.

• Subject discusses the CM’s use of the CMA.

• Subject comments on the confusion caused by the name similarities.

• Subject discusses potential name changes.

• Subject discusses the relationship between the two objects.

Hypotheses

• The CM’s use of a CMA will not be understood.

• The name similarities will cause confusion.

• The relationship between the two objects will not be correctly described.

• A name change will help with to alleviate the confusion.

• A contract for the interface is needed.

• A use example is required.

4. Implement the ChannelFilter Interface.

Goals of Task:

• Determine if the filtering process is understood.

• Determine confusion experienced when implementing the filter interface.

• Determine if the Channel Model’s filterable attributes are apparent.

Test Criteria:

 89

• Subject describes the use of an event filter.

• Subject discusses confusion that arises when using a filter.

• Subject discusses potential event attributes to filter by.

Hypotheses

• The filtering concept will be understood.

• Some confusion with how the filtering happens will arise due to the
channel’s control over the process. An example a filter implementation
will eliminate this confusion.

• Filterable attributes will be understood, but an example will solidify the
interface’s flexibility.

5. Complete Multiple Choice questions.

Goals of Task:

• Measure learnability of ChannelManager Class.

• Measure memorability of ChannelManager Class purpose and use.

• Measure comprehension of when to use a ChannelManager.

• Measure comprehension of when to use a ChannelManagerAuthority.

• Measure comprehension of when to use both ChannelManager and
ChannelManagerAuthority.

• Measure learnability of filtering process.

6. Evaluation Measures

As in the first test, comprehension and perception are the primary attributes to be

measured. They will be apparent from subjects’ reactions to class, interface, and method

names.

 90

B. TEST RESULTS

This section is a listing of the test results for Test 2; these include task completion

statistics and subject comments.

1. Summary of Task Completion

This section summarizes the data collected from subjects’ completion of the four

tasks given in the project write-up. The summary includes a listing of all sub-tasks, a

table showing participants’ meeting of test criteria, and analysis and implications of their

efforts with respect to the test criteria. Each task was broken into sub-tasks in the task list

presented to the subjects. See the document entitled “Test 2 Task Write-Up” in the

appendix to view the task list in the context of the Tracking Application project presented

to the participants.

a. Task 1: Use of ChannelManager Class

This task prompts subjects to redesign the Tracking Application to utilize

a ChannelManager for managing multiple Channels.

1.1: Based on the ChannelManager class name, state the operations you

 would expect the class to perform.

Test Criteria:

1. Subject speculates on adding and removing talkers and listeners to

Channels.

2. Subject demonstrates confusion with respect to the class name and

 functionality.

3. Subject speculates on creating Channnels.

 91

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 Yes No Yes Yes No

Criteria 2 No No No No No

Criteria 3 Yes Yes Yes Yes Yes

Analysis:

This purpose of this sub-task is to determine if the ChannelManager class

name implies the functionality it is designed to provide. Specifically, it uses test criteria

to check if the name implies that the ChannelManager creates Channel objects and

associates talkers and listeners with them.

The test criteria results indicate that none of the subjects were confused by

the intended basic functionality of the class. Three out of the five subjects were able to

identify that the ChannelManager would both create Channel objects and associate

talkers and listeners with the Channel using add methods; and, all five of the subjects

decided that the ChannelManager would create Channel objects.

Implications:

These results indicate that the class name gives immediate indication of its

intended functionality in the Channel Model.

1.2: Based on the ChannelManager class methods, describe the purpose

 of a ChannelManager.

Test Criteria:

1. Subject describes different role than task 1.1.

2. Subject comments on similarities and/or redundancy of

 ChannelManager and Channel classes.

 92

3. Subject realizes that a single ChannelManager replaces multiple

 Channels.

4. Subject describes the ChannelManager’s role of controlling interaction

 between talkers and listeners using internal channels.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No No No No No

Criteria 2 No Yes Yes No Yes

Criteria 3 No No Yes No No

Criteria 4 No No Yes Yes No

Analysis:

The purpose of this sub-task is to determine if the method names,

signatures, and comments allow subjects to quickly discern the role of the

ChannelManager; and, if this role is different than the role implied by the name

as discussed in 1.1. Understanding or of the role was measured with the meeting

of the test criteria.

From Criteria 1, all of the subjects found the role provided by the class

methods to be the same as that implied by the name. Criteria 2 and Criteria 3 are

closely related. The first checks for subjects’ recognition of the redundancy of

ChannelManager and Channel class methods. The second checks to see if this

redundancy leads them to understand that the ChannelManager replaces the need

for multiple Channel instances. Three of the five subjects recognized the

redundancy, but only one of these three understood the replacement. Criteria 4

checked for understanding that the Channel objects are not only managed by the

ChannelManager, but exist internally to it. Only two out of five came to this

conclusion.

 93

Implications:

These results imply that the ChannelManager role is not quickly

understood from examination of its methods. The existence of Channel objects internally

to the ChannelManager and the manager’s replacement of the need for multiple Channel

objects must be understood right away to promote rapid learning. Thus, a short example

and an overview document of the ChannelManager use with a short example is required.

1.3: Determine how use of the ChannelManager class will affect the

 existing Tracking Application structure (refer to class diagram if needed).

Test Criteria:

1. Subject determines that the ChannelManager will replace the Channel

 as the central object between talkers and listeners.

2. Subject realizes that direct access to the Channels is no longer required.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No Yes Yes No No

Criteria 2 No Yes Yes No No

Analysis:

The purpose of this sub-task is to determine if subjects understand how

use of a ChannelManager will change the structure of their application. Specifically, that

the ChannelManager will become the central object between talkers and listeners, and

that they will no longer directly make calls to the Channel methods.

Only two of the five subjects were able to determine the correct program

structure resulting from use of the ChannelManager.

 94

Implications:

These results indicate that program design using the ChannelManager in

place of multiple Channel objects is not understood. A design decision page must be

introduced into the documentation that explains when and how to use a ChannelManager

in an application. This page will quickly give designers an understanding of the

distinctions in the two design options.

1.4: Determine how, where, and when Channel objects will now be

 created.

Test Criteria:

1. Subject determines that ChannelManager will create Channel objects

 internally.

2. Subject realizes that a Channel is created at the first call to

 addTalker or addListener methods with a specific channel ID.

3. Subject demonstrates confusion with this aspect.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No No Yes No Yes

Criteria 2 No No No No Yes

Criteria 3 Yes Yes Yes Yes Yes

Analysis:

The purpose of this sub-task is to force subjects to explain their

understanding of the relationship between the ChannelManager and Channel class

objects. Specifically, it checks to see if subjects understand the manager’s encapsulation

of the channels and if they understand which of the ChannelManager class methods

causes creation of the channels.

 95

All of the subjects demonstrated confusion with the creation of channels.

Only two of the five understood that the channels were created internally to the manager;

and, of these two only one realized that it happened when one of the add methods is

called.

Implications:

The results indicate that the creation of channels by the ChannelManager

is not understood from examination of the existing API documentation. The creation

happens internally to the ChannelManager, so it is not an operation available to the users.

However, subjects’ knowledge of the existence of the Channel constructors leads them to

expect to have control over channel creation. Thus, in the ChannelManager class

comments it must be explained that users do not need to manually create Channel

objects.

1.5: Determine how the use of the ChannelMangager class will affect the

 structure of the SensorInput and InputProcessor classes.

Test Criteria:

1. Subject realizes that each class will now contain a reference to the

 ChannelManager vice a Channel.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No No No No No

Analysis:

This sub-task asks the subjects to examine their talker and listener

component implementations, which contain a reference to a Channel, and to determine if

use of a ChannelManager will change the components’ implementations.

It was a surprise that none of the subjects came to this conclusion.

However, in later tasks they used calls to a ChannelManager object, which indicates that

 96

they understood the reference is necessary. Furthermore, these negative responses may

be due to subjects’ lack of understanding of the class diagram provided to assist in this

task.

Implications:

No conclusions are possible from these results.

1.6: Describe how to assemble one pair of SensorInput and

 InputProcessor objects using the ChannelManager.

Test Criteria:

1. Subject creates a ChannelManager.

2. Subject manually creates the talker and listener components.

3. Subject invokes the ChannelManager add methods.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No Yes Yes No Yes

Criteria 2 Yes Yes Yes Yes Yes

Criteria 3 Yes Yes Yes Yes Yes

Analysis:

This sub-task requires subjects to demonstrate their understanding of the

ChannelManager class functionality which they have gained with a brief investigation of

the class. This checks to see if the class methods and comments are self-descriptive

enough to allow comprehension and use of the class in a short period of time.

Three of the five verbally stated that they would need to create a

ChannelManager object. The other two however, implied its creation with later calls to

 97

its methods. All of the five subjects created the talker and listener components and then

assembled them using calls to the ChannelManager class add methods.

Implications:

These results indicate that an intermediate programmer can figure out how

to use the ChannelManager in a short period of time based solely on the class methods.

It does not however imply thorough understanding of the complete functionality of the

class as is discussed in the previous sub-tasks.

b. Task 2: Implementation of a ChannelManagerAuthority

This task prompts subjects to redesign the Tracking application to utilize a

ChannelManagerAuthority to aide in managing Channels. The intent is to determine

what purpose is implied by the interface methods and name as well as to determine if

subjects want to use the interface instead of the ChannelManager. Thus, two of the sub-

tasks ask them to consider using the interface without the ChannelManager.

2.1: Based on the ChannelManagerAuthority interface name, speculate on

the functionality you would expect an implementing class to perform.

Test Criteria:

1. Subject states that name does not give hint to functionality.

2. Subject discusses possible management of Channels similar to the role

of ChannelManager.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No No No No Yes

 98

Criteria 2 No No No No No

Analysis:

This sub-task is designed to check for initial confusion of the implied

purpose of the interface and, to check if the name implies a role similar to that of the

CannelManager.

Only one of the five subjects expressed confusion due to the interface

name; and, none of them considered the interface name implied a management function.

Implications:

The interface name does not imply it will be used to manage Channel

objects.

2.2: Based on the interface methods, discuss the purpose for its use.

Test Criteria:

1. Subject mentions enforcement of Channel access rules.

2. Subject mentions management of Channels.

3. Subject mentions same purpose as ChannelManager.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 Yes Yes No Yes Yes

Criteria 2 Yes No No No No

Criteria 2 No No No No No

 99

Analysis:

The purpose of this sub-task is to determine what purpose is implied by

the interface method names, signatures, and comments. Specifically, it checks if the

methods imply an access authority role or a management role.

Four out of the five subjects felt that the interface would be used to

enforce access rules for Channel objects. Of these four, one of them considered this

access control to be a management function. None of them considered this interface to be

capable of the same role provided by the ChannelManager.

Implications:

Since the intended use of the interface was not access control [ref 1], the

name clearly does not imply its intended use.

2.3: Discuss the responsibilities an implementing class would have to

fulfill.

Test Criteria:

1. Subject mentions creation of Channel objects internally.

2. Subject mentions Channel management.

3. Subject mentions calls to Channel class methods.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No No No No No

Criteria 2 Yes No No No No

Criteria 3 Yes No No No Yes

 100

Analysis:

This sub-task further investigates subjects’ interpretation of the interface’s

purpose by asking them to explain how they would implement its methods. Specifically,

it checks to see how they will reference Channel objects, if they decide to manage

Channel objects within the authority implementation, and if they mention use of direct

calls to Channel class methods by the authority.

None of the subjects thought that the authority implementation would

create Channel objects. Only one subject felt the interface would manage channels; and,

only two of the five felt that the authority would need to call Channel methods.

Implications:

These results indicate that there is no implied management of or

association with the Channel objects by the authority implementation. This again implies

that the purpose of the interface is not clear; and, a name change or precise

documentation is needed.

2.4: Assume that you will not use a ChannelManager at all. Determine

how you would use the ChannelManagerAuthority to manage Channels.

Test Criteria:

1. Subject discusses need to create and track Channel objects.

2. Subject determines need to create pass through methods that call

Channel class methods.

3. Subject determines not to use the ChannelManagerAuthority for this

puspose.

4. Subject determines that only access policy enforcement is possible.

 101

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No Yes Yes - Yes

Criteria 2 No No Yes - Yes

Criteria 3 Yes No No Yes No

Criteria 4 Yes No No - No

Analysis:

This sub-task asks subjects to forget about the possibility of using a

ChannelManager, which was explored in Task 1, and to determine if the

ChanalManagerAuthority would be beneficial to them for managing Channel objects in

place of a ChannelManager.

Two of the five subjects, determined that they would not use the interface

for management of channels. The other three subjects all determined that they could use

the interface to track and manage channels. Of these three, only one felt that the

authority would also mediate access to the Channel methods.

Implications:

These results imply that the subjects consider the interface to be useful for

creating and tracking channels; but, it is not for mediating access to them as the

ChannelManager does. This confirms that the manager and authority roles are

considered distinct with non-overlapping functionality.

2.5: Describe how you would use the ChannelManagerAuthority to

assemble one pair of SensorInput and InputProcessor objects.

Test Criteria:

1. Subject creates Channel object within the ChannelManagerAuthority.

 102

2. Subject creates pass through methods to add talker and listener.

3. Subject determines this is not possible with the

 ChannelManagerAuthority.

4. Subject describes ChannelManagerAuthority’s use by an external class

to enforce access rules.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 - No No - -

Criteria 2 - No No - -

Criteria 3 Yes No No Yes Yes

Criteria 4 - Yes Yes - Yes

Analysis:

This sub-task builds on the previous by asking subjects to explore how the

authority implementation would be used to assemble a talker and listener pair.

Implications:

Three of the five subjects correctly determined that assembly of

components is not the intended purpose of the authority implementation. Additionally,

three of the five incorrectly asserted that the purpose was to provide access control. This

reconfirms the need to specify the intended use of the authority.

c. Task 3: Joint Use of the ChannelManager and
ChannelManagerAuthority

This task prompts subjects to redesign the Tracking Application to use the

ChannelManager class and the ChannelManagerAuthority interface together for

managing multiple Channel objects. This explores the implied use of the authority by the

manager as is indicated by the ChannelManagerAuthority argument in on of the

ChannelManager constructors.

 103

3.1: Discuss how the ChannelManager uses the

 ChannelManagerAuthority.

Test Criteria:

1. Subject uses the ChannelManagerAuthority to enforce access rules.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 Yes No Yes No Yes

Analysis:

This sub-task takes a poll of the number of subjects who conclude that the

purpose of the authority interface is to provide access control, which three out of five

subjects did.

Implications:

It was known during the design of this test, that the interface name and its

method names implied access control but its comments implied some kind of

management function. After exposure to the possibility of managing channels in Task 2,

this sub-task confirms the expected conclusion with respect to the purpose of the

authority interface; and, it confirms the need to document the intended use of the

ChannelManagerAuthority interface.

3.2: Discuss the similarities between the two names and the impact it has

 on implied uses.

Test Criteria:

1. Subject is confused by the similarity of the names.

2. Subject expresses a need to change the ChannelManagerAuthority

name.

 104

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No No No No No

Criteria 2 No No No Yes Yes

Analysis:

This sub-task asks subjects to consider the names of the ChannelManager

class and ChannelManagerAuthority interface along with their conclusions about their

uses and to express any confusion caused by the similar names. Specifically, a name

change for the authority based on their brief exposure is desired.

Unfortunately, only two of the subjects desired a name change even

though their responses in previous tasks indicated incorrect conclusions to the intended

use.

Implications:

The name similarities do not cause confusion and is not the cause of the

incorrect conclusions of intended use.

3.3: Discuss if use of the two objects together changes the way you would

implement the ChannelManagerAuthority.

Test Criteria:

1. Subject indicates that role of interface is changed by joint use.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No Yes No No No

 105

Analysis:

This sub-task asks subjects to compare their use of the authority interface

in Task 2 and its joint use with the ChannelManager in this task and to determine if a

different role is implied.

None of the subjects changed their implementations. The one who

indicates yes in the chart thought the question was with respect to the design of the

interface itself.

Implications:

The interface is seen to have the same purpose whether it is used with a

ChanneManager or by itself.

d. Task 4: Implementation of a ChannelFilter

This task prompts subjects to consider the use of a filter that will only

allow a Channel to deliver desired events to a single InputProcessor. The intent is to

have the subjects investigate the use of the ChannelFilter interface and ensure that its

documentation, functionality, and intended use in the Channel Model are understood.

4.1: Determine which API feature you would use to create a filter.

Test Criteria:

1. Subject determines to use the ChannelFilter interface.

2. Subject discusses the pre-defined filter provided in the API.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 Yes Yes Yes Yes Yes

Criteria 2 No No Yes Yes Yes

 106

Analysis:

This sub-task determines if the API’s available filter mechanism, namely

the provided interface, is immediately apparent. It also checks to see if subjects

investigate the predefined filter implementation as an example of the filtering process.

All of the subjects found the provided interface and three of them

examined the example implementation.

Implications:

This task was mainly to prompt subjects to examine the filtering

mechanism. It was expected that the ChannelFilter interface name would be self-

descriptive. The results indicated that the designer’s focus on providing self-descriptive

names for the filtering was effective.

4.2: Give an overview of the filtering process. Include the roles of the

SensorInput, Channel, InputProcessor, and filter objects.

Test Criteria:

1. Subject realizes that the SensorInput only produces events.

2. Subject realizes that the Channel uses the filter to screen events for

 delivery to listeners.

3. Subject comments on the filters job of defining the filter process.

4. Subject realizes that the InputProcessor only receives events.

5. Subject tries to have the filter deliver events.

6. Subject expresses confusion with this task.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 Yes Yes Yes Yes Yes

 107

Criteria 2 Yes Yes Yes Yes Yes

Criteria 3 Yes Yes Yes Yes Yes

Criteria 4 Yes Yes Yes Yes Yes

Criteria 5 No No No No No

Criteria 6 No No Yes No No

Analysis:

This sub-task determines if the filtering mechanism is self-descriptive.

Specifically, it ensures that subjects can ascertain the filtering process quickly based on

the provided interface and the example implementation.

All of the subjects were able to quickly understand how the Channel

Model objects interacted when filtering is employed. Only one subject expressed

confusion with this task. He was unclear about when the filtering occurred. This will be

explored more in the next section dealing with subjective comments.

Implications:

The place of filtering in the Channel Model is easily understood. The

design of the filtering mechanism is efficient.

4.3: Discuss possible attributes of the four objects mentioned in task 4.2

which you could use to do the filtering.

Test Criteria:

1. Subject mentions class names.

2. Subject mentions priorities.

 108

3. Subject mentions time stamp on event.

4. Subject mentions user defined attributes.

5. Subject mentions attributes for all objects.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 No Yes Yes Yes Yes

Criteria 2 No Yes Yes No No

Criteria 3 No No No No No

Criteria 4 No No Yes No Yes

Criteria 5 No Yes Yes No Yes

Analysis:

This sub-task checks to see that subjects understand how the filtering is

accomplished. Specifically, it checks verifies that they can discern the filterable

attributes of the various objects.

The specific test criteria indicate the level of investigation subjects gave to

this task. Whether they found all the filterable attributes is not critical. Criteria 1 and 2

results indicate that most of the subjects could discern the available attributes such as

class names and priorities; and, Criteria 5 results indicate that most subjects discerned

that all objects possessed filterable attributes. However, only two of the five mentioned

the flexibility of user defined attributes which are not related to the API implementation

of the objects. For example, a data member created for filtering in a talker, listener, or

event implementation.

Implications:

Subjects understand the API defined filterable attributes; but, the

flexibility of user-defined attributes is not apparent.

 109

4.4: Discuss the method calls that occur when a Channel uses the filter.

Test Criteria:

1. Subject finds the isAccepted method in the ChannelFilter interface.

2. Subject mentions internal methods of the implemented filter.

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Criteria 1 Yes Yes Yes Yes Yes

Criteria 2 No No Yes Yes No

Analysis:

This sub-task was designed to check that subjects could describe the filter

process with specific method calls, thereby demonstrating understanding of how all the

objects interact in the process. Specifically, realization that the Channel object calls the

filter’s isAccepted method indicates understanding that the channel relies on the filter to

provide the filtering capabilities.

All of the subjects correctly demonstrated the required method calls.

However, only two went further to discuss the internal calls made by the filter.

Implications:

The Channel objects dependence on the filter is understood.

 110

2. Summary of Subjective Comments.

The test considered two different API features. The first tested class and interface

provided for channel management and the second tested the filtering mechanism. The

comments are grouped with respect to these two categories.

a. Channel Management

The following comments highlight participants’ confusion with the use of

the ChannelManager class, the use of the ChannelManagerAuthority interface, and their

joint use.

• ChannelManagerAuthority Control Over ChannelManagers

One of the subjects felt that the word Authority in the name implied that this
interface would provide another layer of control hierarchy, with the authority
having control over many instances of ChannelManager.

• Inconsistent Terminology

The ChannelManagerAuthority class comments describe a channel controller
component; this term is not used anywhere else in the documents. In addition, the
ChannelManager.getAuthority method states that it provides access to the
‘Security Authority’. One of the subjects felt that all these differences confused
the purpose of the authority interface.

• Channel Creation

Many of the subjects wanted the ChannelManager class to have a method for
creating Channel objects. They felt that the class methods implied existence of
channels but nothing in the documentation explained how they were created.
They felt it was essential to know when they were created before a user could
begin to make any of the other method calls such as addTalker or talk. They
spent much time searching the Channel class documentation looking for a
CreateChannel method. This led one subject to incorrectly believe that the
channels existed externally to the manager. They expressed the desire to have
control over Channel creation or at least an explanation of how it happened.

• ChannelManager/Channel Relation

 111

A few of the subjects were confused by the relationship between these two
objects. They thought that channels existed externally to the manager and that the
manager only kept an internal listing of channels. One subject related this to the
word ‘Manager’ in the name, which he felt did not imply a creation role. The
subjects spent much time trying to figure out how to associate their Channel
objects with the manager.

• Get-method Without Matching Set-method

One subject was looking for how the ChannelManager stored Channel objects
and found the getMemberChannels method. He immediately asked where the
addChannel method was; this is an example of a violation of programming
discourse rules [ref 2]. He explained that is was the get was missing a matching
set.

• ChannelManagerAuthority Comments

All of the subjects felt that the method descriptions in the interface did not match
with the function implied by the method names. One example was a get method
with a comment that described a set operation.

• ChannelManagerAuthority Purpose

All of the subjects stated that they could not figure out what the designers
intended use was for this interface. Most of them thought that it was for enforcing
access control rules. One thought that it had both access control and scheduling
responsibilities. One of them felt that it was an un-necessary interface that checks
performed by its methods were already done by the application programmer when
channels were created and talkers and listeners were associated. All of them
concluded that the purpose needed to be clarified.

• ChannelManagerAuthority Method Arguments

One of the subjects felt that the interface method arguments were misleading with
some indicating the interface is tied to one channel and others indicating authority
over multiple channels. He explained that the getListenerPriority method took a
class name argument; he wanted to know how the authority would return a
priority for a specific listener if multiple listeners of the same class were
registered with a channel. Furthermore, he asked what would happen if a class of
listeners were registered with many channels; how would the authority know for
which channel to return the priority for? The interface also conflicts with some of
the API’s addListener methods that allow assignment of a priority to a single
listener. Whereas the authority interface’s getListenerPriority method gets a

 112

priority for an entire class of listeners. He felt these problems indicated poor
design of the interface.

• ChannelManagerAuthority is Redundant

One of the subjects felt that the checks performed by the interface were
redundant. He explained that it made no sense to check things that you had
already checked during design. He gave the example of creating a channel,
authorizing talkers and listeners, and then checking your own authorization. To
him it made no sense.

• ChannelManagerAuthority Name Change

One of the subjects commented that the word ‘Manager’ should be taken out of
the name because that it implied authority was over the ChannelManager and not
an individual Channel. He suggested it be changed to ChannelAuthority.
Another subject, who thought that the interface is used for access control, wanted
to change the name to ChannelSecurity.

b. Filtering Process

• Bad Approach to Filtering

One subject felt that the use of filtering in the Channel was a bad approach. He
felt that events should just be pushed to all listeners. He felt that filtering still
required examination of all listeners to check their filters and that this eliminated
any benefit gained from not delivering to a particular listener.

• Filter Association

One of the subjects spoke of the filter as a single object employed by the channel
on its receiving side that would drop incoming events that the channel did not
want to accept. Two other subjects did not immediately understand that the filter
was associated with a specific listener and that their may be multiple filters for a
listener. Only the filter manipulation methods removed their confusion.

• ChannelFilter Interface Comment Confusing

One of the subjects felt that the interface comment was poorly written and
appeared to contradict itself at first reading.

• Filter Eliminates Broadcast

 113

One of the subjects did not like the fact that after choosing to use a filter would
eliminate the reception of all other events. He thought this would require
definition of a filter for every type of event a listener required.

• Inconsistent Method Names

One subject noticed that the Channel class contained an addFilter method
whereas the ChannelManager class contained an addListenerFilter. He felt that if
the functionality is the same than they should have the same names.

• Filter Application Order

One subject wanted to know in what order the filters would be applied. He could
not find an answer in the documentation and thought it should be explained.

C. API ENHANCEMENTS

The enhancements are categorized as design changes or documentation changes.

They are discussed according to their impact on comprehension, learnability, and

perception of the API and its intended use. The majority of the enhancements are related

to documentation of features and their use. However, there are some enhancements for

the design of the ChannelManagerAuthority interface.

a. Design Changes

• Addition of ChannelManager.createChannel Method

The absence of a createChannel method violates a programming discourse which
leads to confusion at initial exposure to the class. Programmers expect set and get
methods to occur in pairs. The apparently missing create method impacts class
learnability. Addition of a create method will not only eliminate the confusion, it
will also enhance comprehension of the Channel Model. The create method will
give programmers control over channel creation and will make the necessity of a
Channel object between talkers and listeners more apparent.

• ChannelManagerAuthority Name Change

The name of this interface must be changed to reflect its purpose in the API. The
current name implies some kind of management or access control function;

 114

however, the intended use was to provide a programming tool to ensure that
components are assembled correctly. The new name must indicate this clearly.

• ChannelManagerAuthority Method Arguments

The level of checking implied by the types contained in the method arguments
does not match with the attributes associated with objects during component
association. For example, when a listener becomes associated with a Channel, it
includes a priority; however, the ChannelManagerAuthority screens based on the
priority of an entire class. The intended use of the class must be thoroughly
specified and the methods redesigned to ensure the functionality is available.

• Possible Elimination of ChannelManagerAuthority

After consideration of the above two design changes, it may be concluded that
this interface is not necessary. The intention of the interface must be clearly
stated; then, it must undergo further usability analysis to determine if it is a
necessary and useful feature of the API.

b. Documentation Changes

• ChannelManager Use Description

Both the ChannelManager and the Channel class comments must include a
discussion of the design changes that occur when a ChannelManager is used. It
must stress the differences between a project using multiple channels and a
project that allows the ChannelManager to manage the multiple channels. This
will enhance learnability design options.

• ChannelManagerAuthority Method Descriptions

The method descriptions found in this interface must be changed to describe the
same functionality as that implied by the names. The disparity between the two
implied functionalities greatly impacts comprehension and learnability of the
interface.

• Class Comments

All class comments, including method descriptions, must be rewritten to describe
the roles of the classes in the Channel Model and the purpose of their methods in
fulfilling those roles. This will greatly enhance quick learning and
comprehension of the API.

 115

• Description of ChannelManager/ChannelManagerAuthority Interaction

The interaction between these two objects must be thoroughly explained using
both visual diagrams and written documentation. This is necessary to ensure
comprehension of how the manager uses the authority and the different behavior
expected when an authority is used.

• ChannelManagerAuthority Purpose

The purpose for implementing this interface must be clearly stated in the API
overview documentation and in the interface comments.

• Filtering Overview

The filtering mechanism is easy to learn; however, the object relationships that
occur when filtering is used are not apparent. An overview of the filtering
implementation and process will enhance learnability of this feature. This
overview must include the association between the filter and listener object, the
use of the filter by the channel, and the order of application when multiple filters
exist for a single listener.

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

VI. CONCLUSIONS AND FUTURE WORK

Overall, the Channel API was well received by the test subjects. All of them were

able to arrive at a basic understanding of the API’s use and underlying concepts during

test sessions ranging from 40 minutes to 90 minutes. They made comments suggesting

that they were satisfied with the intent of the API and that they would use the API for

programming projects. However as was discussed in the Results Section of the two

previous chapters, the tests revealed some minor design flaws in the API that needed to

be addressed. Implementation of the recommendations is discussed in the following

section. In addition, the necessity for future work to follow up on the changes to the API

as well as to test the API in its intended component based design setting are discussed in

Section B of this chapter.

A. CHANNEL API

The changes to the API discussed here combine the recommendations for the test

results presented in Chapters IV and V. Additionally, the method of API distribution is

briefly mentioned.

1. Changes Made

Changes to the API involved additions or improvements to the documentation and

additions or improvements to the source code.

The necessary document changes as recommended in the test chapters are

satisfied by the following:

• A package overview page is provided that lists the API classes/interfaces
with their roles in the Channel Model and links to use examples, provides
a diagram of the Channel Model objects and their interactions, and
explains important API concepts such as the Channel ID schema, filtering,
and event flow.

• Rewriting of the source code comments is accomplished to ensure that the
Javadocs they produce will contain accurate and useful descriptions of the
classes, interfaces, and methods.

 118

The design changes made are as follows:

• Channel.talk method is renamed to Channel.addEvent to reinforce the
simplex event flow and to provide a balance between the actions occurring
on either side of the channel.

• ChannelManager class now contains a createChannel method to eliminate
confusion caused by apparent programming discourse rule violation.

• ChannelManagerAuthority interface name is changed to
ChannelAccessControl to better describe the intended functionality of the
interface.

2. API Distribution

The Channel API is located on the Web at

www.SAAMNET.org/ChannelAPI.html. The class files, documentation files, and source

code files are available for download either as an entire package or as separate pieces. It

is recommended that the documentation be downloaded for reference during use of the

API since the background section of this thesis does not cover all the methods and classes

contained in the package.

B. FUTURE WORK

1. Feedback from Large-Scale Use

The Channel API is designed to support Component Based Design (CBD)

projects. The testing done in this paper only looked at general usability attributes and did

not consider the specific qualities of CBD support. Thus, feedback from the API’s use

for these types of projects must be obtained. Distribution of the API should be tracked

and feedback obtained from the users to find any quirks experienced during its use in

CBD projects. This feedback should include well planned questionnaires that ask for

comments on specific attributes of the API.

Additionally, further usability testing should be done on a larger scale focusing

entirely on CBD support. This would require changes to the testing method used in this

 119

paper. Three changes to the approach are suggested. First, the project should be an

actual real world project that uses CBD concepts in a large-scale project, which would

include a large number of components and cooperation between a large-number of

programmers for their assembly. Second, the testing should not consist of single one-

time sessions per subject; instead, testing should be done in-line with the project

implementation, which will allow observance of the API’s use from initial exposure

through project completion. Third, consideration should be given to using the think out

loud protocol with paired programming; this will make the subject verbalizations more

natural and will eliminate intrusions made by the test monitor to extract feedback. These

changes will allow more rigorous testing of the API.

2. Redesign and Retesting of ChannelAccessAuthority

The changes made to the ChannelAccessAuthority interface, previously the

ChannelManagerAuthority, were minimal. For example, the interface comments and its

methods’ comments were changed to provide a better indication of its use. However,

there are still questions with respect to the parameters required in the interface methods.

Some of these parameters do not seem to provide the level of access to components

suggested by the method name. For example, the parameter in the method

getListenerPriority provides access to a listener based on a String class name, which

implies that the priority is associated with an entire class; but, the priority is associated

with a single listener when it registers with a channel.

These questions are due to design problems of the interface. Specifically, its

purpose in the overall Channel Model is not well planned. To overcome this problem,

the attributes of the components this interface operates on must be examined to determine

better parameters for the interface methods. Once this is accomplished, further usability

testing can be done focusing entirely on the redesigned interface.

 120

3. Generalization of the Channel Model as a Pattern for Component
Based Design

The discussion of the Channel Model provided in Chapter II Section B is a limited

example of how the Channel Model may be generalized allowing discussion of the model

with out respect to any particular programming language. Future work is possible to

determine if the model is capable of providing all the needs of a component based design

pattern for assembling components in a single application. If all the needs are not met,

then the deficiencies could be noted and the model adjusted to add the missing

requirements. The API could then be redesigned to show proof of concept for the

resulting pattern.

In addition, extension of the Channel Model for assembly of components across

process boundaries has potential for future work. Specifically, determination of the

requirements for the Channel Model to allow inter-process message passing and the work

necessary to fulfill these requirements must be determined. If there is any benefit in

extending the API in this manner, then the work may be accomplished.

4. Investigate Making Channel class Private

There was some confusion experienced by all of the test participants due to the

redundancies of the Channel and ChannelManager class methods. The confusion is

currently mitigated by the introduction of explanatory documentation. However, it is

thought that the Channel class could be made a private class. This would make the

ChannelManager class the central point for channel access in an application. This

change must be considered to determine the resulting changes required to the

ChannelManager class and to determine if elimination of access to the Channel class by

programmers would have a negative impact on the extensibility of the Channel API.

 121

APPENDIX A

TEST 1 PROJECT WRITE-UP

This section contains the project write-up presented to participants of test 1.

Contact Tracking Application Project

 You are assigned to develop a shipboard contact tracking application that

receives inputs from sensors and processes these inputs. There are two main classes to be

developed. The first is a SensorInput class that sends the input to the appropriate

processor. The second is an InputProcessor that receives and processes the inputs.

 You are to develop these classes independently but they must be

assembled in some way that facilitates the passing of information. To do this you will

use the Channel Model API. This API provides a Channel object that will tie together the

two classes described above. The Channel model works by defining objects as either

Listeners or Talkers, each of which is added to the same Channel. A talker passes data to

the Channel and the Channel delivers the data to a listener.

 For this session, you will examine the API documentation to determine

how you would accomplish the project. As you follow the task list presented below,

please verbalize your thought process while examining the API documentation. Describe

the classes, interfaces, methods, and method arguments you would use and, describe any

confusion you encounter with the API or its documentation. Also, comment on any

functionality for which examples or further explanation would be useful.

Task1: Design the SensorInput class as a Talker.

 1.1 Determine how the SensorInput class fulfills the role of Talker.

 1.2 Determine if any of the API classes or interfaces need extension or
 implementation for this task.

 122

 1.3 Determine how the SensorInput object will supply data to the Channel.

 1.4 What might a constructor for this class look like?

Task2: Design the InputProcessor class as a Listener.

 2.1 Determine how the InputProcessor class fulfills the role of Listener.

 2.2 Determine how an InputProcessor will interact with the Channel.

 2.3 Determine how the InputProcessor is related to the Channel. Is either
 object a data member of the other class.

 2.4 How might this class constructor look?

 2.5 How will an InputProcessor handle the data passed by the Channel?

 Explain the processing of the object passed to the listener.

Task3: Design the TrackingApp class that uses a Channel to assemble the two classes you

designed above.
 3.1 Describe how you would create a Channel object.

 3.2 Determine how to associate an InputProcessor object with the Channel
 object.

 3.3 Determine how to associate an instance of the SensorInput class with
 the Channel object.

 3.4 Determine in which class this association would be initiated.

 123

 3.5 Determine how a SensorInput object will deliver a data object to the
 Channel.

 3.6 Assume that a SensorInput object has received a piece of input data.
 Describe the sequence of method calls that occur to get the data from the
 SensorInput to the InputProcessor.

TEST 2 PROJECT WRITE-UP

This section contains the project write-up as presented to participants of Test 2.

Contact Tracking Application Project Redesign

 For this session, assume that the following Tracking application structure

has already been implemented. Recall that the SensorInput class is a Talker that pushes

ChannelEvent objects to the Channel by calling the Channel.talk() methods; and, the

InputProcessor class implements the ChannelListener interface so that the Channel can

deliver events to each InputProcessor by calling their receiveEvent() methods. Note that

it was chosen for each Talker and Listener to contain a data member that is a reference to

the Channel object that each has registered with; and, each registers with its Channel by

calling the Channel’s addTalker() or addListener() methods.

 124

+talk(ChannelEvent)() : bool
+addListener()
+addTalker()

-ID : int
Channel

-Channels
-Talkers
-Listeners

TrackingApp

-ListenChannel : Channel
InputProcessor

-TalkChannel : Channel
SensorInput

1*

*

-Listens to

*

-talks on

* *

+receiveEvent(ChannelEvent)()

«interface»
ChannelListener

+getEvent() : object(idl)
+getTalker() : object(idl)

-Talker : object(idl)
-event : object(idl)

ChannelEvent

-Produces*

*

Existing Tracking
Application Structure

 Now, for this session you will use many instances of both the SensorInput

class and the InputProcessor class. You will have an AirSensorInput, a

SurfaceSensorInput, and a SubSurfaceSensorInput; likewise, you will have an

AirInputProcessor, a SurfaceInputProcessor, and a SubSurfaceInputProcessor.

 By following the existing class structure in the diagram above, the

TrackingApp class would create each of the listed instances and would create a Channel

object between each pair. For example, a Channel instance named AirChannel would

connect the AirSensorInput to the AirInputProcessor. This would require that the

TrackingApp keep track of all the Channels. However, the Channel API contains a

ChannelManager Class and a ChannelManagerAuthority interface that may be useful in

managing the Channels for you.

 Below, is a task list that will lead you to investigate both of these API

features. As you complete the tasks please verbalize your thought process. Specifically,

mention the class, interface, and method names you consider. Also, mention any

confusion that arises from the names, methods, and method arguments.

 125

Task1: Redesign the Tracking Application to utilize the ChannelManager class to aid in

managing the Channels.

 1.1 Based on the ChannelManagerclass name, state the operations you
 would expect the class to perform?

 1.2 Based on the class methods, describe the purpose of the
 ChannelManager.

 1.3 Determine how the choice to use this class will affect the existing
 program structure.

 1.4 Determine how the Channel objects will now be created.

 1.5 Determine how the use of this class will affect the structure of the
 SensorInput and InputProcessor classes.

 1.6 Describe how to assemble one pair of SensorInput and InputProcessor
 objects using the ChannelManager.

 126

Task2: Redesign the Tracking Application to utilize the ChannelManagerAuthority

Interface to aid in managing the Channels.

 2.1 Based on the interface name, speculate on the functionality you would
 expect such an object to perform.

 2.2 Based on the interface methods, speculate on the purpose for using
 such an object.

 2.3 Speculate on the responsibilities an implementation of this interface
 would have to fulfill.

 2.4 Assume that you will not use a ChannelManager Object at all.
 Determine how you would use the ChannelManagerAuthority Interface to
 manage Channels.

 2.5 Describe how you would use the ChannelManagerAuthority to
 assemble one pair of SensorInput and InputProcessor objects.

Task3: Redesign the application to use the ChannelManger class and the

ChannelManagerAuthority interface together.

 3.1 Discuss how the ChannelManager uses the ChannelManagerAuthority.

 127

 3.2 Discuss the similarities between the two names.

 3.3 Determine if use of the two objects together changes the
 implementation of the ChannelManagerAuthority interface. Does it
 change the role of the CMA?

 The Channel API provides a mechanism that allows a Channel to filter

events before dispatching them to Listeners. This keeps the Channel from having to

deliver every event to every one of its Listeners. Consider the overall Channel Model

attributes such as how each object is distinguished by the Channel when registering and

when events are delivered to the Channel. Specifically, consider qualities of the Talkers,

events, and Listeners that may distinguish them.

 Assume you have a Channel object, a SensorInput object, and an

InputProcessor object.

Task4: Create a Filter that will allow a Channel to only deliver desired events to the

InputProcessor.

 4.1 Determine the API feature you will use to create this filter.

 4.2 Describe an overview of how this filtering process will work. Include
 the roles of the SensorInput, Channel, InputProcessor, and Filter objects.

 4.3 Discuss possible attributes of the four objects in 4.2 you could use to
 do the filtering.

 4.4 Discuss the method calls that occur when a Channel uses the filter.

 128

THIS PAGE INTENTIONALLY LEFT BLANK

 129

LIST OF REFERENCES

1. Eryigit, Cihat. A Highly Adaptable Generic Event-Based Message Channel Design for
Loosely Coupled Software Modules, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, March 2002.

2. McLellan, Samuel G., et al., “Building More Usable APIs,” IEEE Software, volume:
15 Issue 3, pp. 78-86, May/June 1998.

3. Rubin, Jeffrey, Handbook of Usability Testing: How To Plan, Design, and Conduct
Effective Tests. John Wiley & Sons, Inc., 1994.

4. Java Foundation Classes: Swing GUI Components. 12 April 2003. Sun Microsystems.
22 May 2003. <http://java.sun.com/products/jfc/#swing>

 130

THIS PAGE INTENTIONALLY LEFT BLANK

 131

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Geoffrey Xie
Naval Post Graduate School
Monterey, CA

4. Rudolph Darken
Naval Post Graduate School
Monterey, CA

